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Over- and Underapproximating Reach Sets for Perturbed
Delay Differential Equations

Bai Xue , Qiuye Wang , Shenghua Feng , and Naijun Zhan

Abstract—This article explores reach set computations for per-
turbed delay differential equations (DDEs). The perturbed DDEs of
interest in this article is a class of DDEs whose dynamics are sub-
ject to perturbations, and their solutions feature the local home-
omorphism property with respect to initial states. Membership in
this class of perturbed DDEs is determined by conducting sensi-
tivity analysis of solution mappings with respect to initial states
to impose a bound constraint on the time-lag term. The homeo-
morphism property of solutions to such class of perturbed DDEs
enables us to construct over- and underapproximations of reach
sets by performing reachability analysis on just the boundaries
of their permitted initial sets, thereby permitting an extension of
reach set computation methods for ordinary differential equations
to perturbed DDEs. Three examples demonstrate the performance
of our approach.

Index Terms—Boundary reachability methods, homeomorphism
property, perturbed delay differential equations (DDEs).

I. INTRODUCTION

Reachability analysis, which involves computing appropriate ap-
proximations of reachable state sets, plays a fundamental role in
computer-aided verification and analysis [13]. We have over the past
decades witnessed a rapidly growing interest in developing reachability
analysis techniques for dynamic systems modeled by ordinary differ-
ential equations (ODEs) or hybrid-state extensions thereof (e.g., [1],
[3]–[5], [7], [12], [19], [20], and the references therein).

However, physical systems are often composed of networks of
interacting systems, time-delay phenomenon thereby exists ubiqui-
tously and is appearing unavoidably. Delays are often involved in
sensing or actuating by physical devices, in data forwarding to or
from the controller, etc. Therefore, when conducting safety verification
of such physical systems with time-delay phenomenon, DDEs are a
suitable tool for modeling dynamics of these systems. The problem
of performing reachability analysis for DDEs is surely challenging.
Growing attention is drawn to it recently [6], [10], [14], [23]. Most
of existing works, however, focused on overapproximating reach sets
for systems modeled by DDEs with finite or infinite time horizon, not
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touching on the underapproximation problem of reach sets for DDEs.
Recently, Xue et al. [21] inferred a class of perturbation-free DDEs
with solution mappings featuring the local homeomorphism property
with respect to initial states. For such DDEs, the set-boundary reacha-
bility analysis method for ODEs in [22] and [18] is extended to over-
and underapproximate reach sets. A straightforward extension of the
method in [21] is to deal with DDEs with time-constant perturbations.
Goubault et al. [9] extended the method in [8] and the Taylor model
based reachability method for ODEs to the computation of outer-
and inner-approximations of reach sets for DDEs with time-constant
perturbations. This work goes further than [21] and [9], and studies the
over- and underapproximate reachability analysis problem for DDEs
subject to time-varying Lipschitz perturbations.

Like [21], a constraint on the time-lag term is inferred based on the
requirement that the sensitivity matrix is strictly diagonally dominant.
The resulting DDE with time-lag terms satisfying this constraint has
solutions featuring the local homeomorphism property. This constraint
presented in this article is uniform over all perturbations ranging
over a compact set. We topologically show that over- and underap-
proximations of certain reach sets can be computed by performing
reachability analysis on just the initial set’s boundary. A computed
overapproximation, which can be used to determine robust satisfiability
of safety properties regardless of the actual perturbation, is a set which
includes states reachable by all possible trajectories starting from legal
initial states. A computed underapproximation, which can be used to
determine robust violation of safety properties regardless of the actual
perturbation, is a set of states in which for any perturbation each state
is reachable by a trajectory initialized at some state in the initial set.
Three illustrative examples demonstrate our approach.

The structure of this article is as follows. We formulate perturbed
DDEs and the reachability problem of interest in Section II. In
Section III, we present our reachability analysis approach. Before
concluding this article in Section V, we evaluate our approach on three
examples in Section IV.

II. PRELIMINARIES

The following notations are used throughout this article: The space
of continuously differentiable functions onX is denoted by C1(X );Δ◦,
Δc, and ∂Δ represent the interior, complement, and boundary of the set
Δ, respectively; vectors in Rn are denoted by boldface letters; ‖x‖ de-
notes the 2-norm, i.e., ‖x‖ =

√∑n
i=1 x

2
i , where x = (x1, . . . , xn)

�;
the set of n× n matrices over the field R of real numbers is denoted
by Rn×n.

In this article, we consider systems that can be modeled by DDEs of
the following form:

ẋ(t) = f (x(t),xτ (t),d(t)) , t ∈ [τ,Kτ ] (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
� : R → Rn, xτ (t) =

(x1(t− τ), x2(t− τ), . . . , xn(t−τ))� :R→Rn, d(t)=(d1(t), . . . ,
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dm(t))� : R → D with D being a compact set in Rm is often used to
incorporate model uncertainties and external disturbances, K ≥ 2 is
a positive integer and f ∈ C1(Rn × Rn ×D). The initial condition
x(·) : [0, τ ] → Rn for DDE (1) is governed by ODEs of the following
form:

ẋ(t) = g (x(t),d(t)) , t ∈ [0, τ ] ,x(0) ∈ I0

where d(t) : R → D,g ∈ C1(Rn ×D) and I0 ⊂ Rn is a compact set.
Denote the set of admissible perturbation inputs as

D̂ := {d(·) : [0,Kτ ] → DL− Lipschitz continuous} .
That is, there exists a uniform constant L > 0 such that

‖d (s1)− d (s2) ‖ ≤ L |s1 − s2| , ∀s1, s2 ∈ [0,Kτ ] , ∀d ∈ D̂.

This assumption for perturbation inputs is relatively strong compared
to what typically appears in the literature such as measurable inputs.
However, the resulting set D̂ is compact in the topology induced
by the uniform norm according to Arzelà–Ascoli Theorem [15]. The
compactness property of the set D̂ is useful in proving the compactness
of reach sets of interest in this article, which can be found in Lemma 2.

Based on the above assumption, we denote the trajectory of sys-
tem (1) initialized at x0 ∈ I0 and subject to a perturbation d ∈ D̂
by φ(·;x0,d) : [0, T

′] → Rn, where φ(0;x0,d) = x0. Besides, we
assume that Kτ ≤ T ′. In the following, we define reach sets of the
initial set I0 for t ∈ [0,Kτ ].

Definition 1: Given a perturbation d ∈ D̂, the reach set Ω(t; I0,d)
at time t ∈ [0,Kτ ] is a set of states reached by trajectories starting from
I0 after time duration t, i.e.,

Ω(t; I0,d) = {x ∈ Rn | ∃x0 ∈ I0,x = φ (t;x0,d)} .
The reach set Ω1(t; I0) at time t ∈ [0,Kτ ] is a set of states {x} visited
by all trajectories originating from I0 after time duration t, i.e.,

Ω1 (t; I0) =
{
x ∈ Rn | ∃d ∈ D̂, ∃x0 ∈ I0,x = φ (t;x0,d)

}
.

The reach set Ω2(t; I0) at time t ∈ [0,Kτ ] is a set of states {x} such
that for every state x in it and every perturbation input d ∈ D̂, there
exists a corresponding initial state x0 ∈ I0 such that x = φ(t;x0,d),
i.e.,

Ω2 (t; I0) =
{
x ∈ Rn | ∀d ∈ D̂, ∃x0 ∈ I0,x = φ (t;x0,d)

}
.

�
The reach sets Ω1(t; I0) and Ω2(t; I0) are termed as the maximal

and minimal forward reach sets in [11], respectively. It is obvious
that Ω1(t; I0) = ∪

d∈D̂Ω(t; I0,d) and Ω2(t; I0) = ∩
d∈D̂Ω(t; I0,d).

In this article, we focus on the computation of overapproximations
of the reach set Ω1(t; I0) and underapproximations of the reach set
Ω2(t; I0) for t ∈ [0,Kτ ].

Definition 2: Given t ∈ [0,Kτ ], an overapproximation of the reach
set Ω1(t; I0) is a set O(t; I0) satisfying Ω1(t; I0) ⊆ O(t; I0). An
underapproximation U(t; I0) of the reach set Ω2(t; I0) is a subset of
Ω2(t; I0), i.e., U(t; I0) ⊆ Ω2(t; I0).

From Definition 2, an overapproximation O(t; I0) is an enclosure
such that φ(t;x0,d) ∈ O(t; I0) for x0 ∈ I0 and d ∈ D̂, where 0 ≤
t ≤ Kτ . A useful property of such overapproximations is to determine
robust satisfiability of safety properties. If system (1) is modeled by an
ODE, there are various existing methods for computing such overap-
proximations. For example, the authors in [2] and [1] proposed methods
to perform overapproximate reachability analysis for ODEs subject to

Lipschitz continuous and piecewise continuous perturbations, respec-
tively. In contrast, an underapproximation U(t; I0) is a set of states
{x} such that forx ∈ U(t; I0) and d ∈ D̂ there exists a corresponding
initial state x0 ∈ I0 satisfying x = φ(t;x0,d). A useful property of
such underapproximations is to determine robust violation of safety
properties regardless of the actual perturbation.

Throughout this article, some additional assumptions are used.
Assumption 1: 1). The viable evolution domain for system (1) is

denoted by X , a compact subset of Rn. 2). The initial set I0 is a subset
of X . Also, the set of states visited by all trajectories starting from the
initial set I0 within the time interval [0,Kτ ] is also included in X , i.e.,
∪t∈[0,Kτ ]Ω1(t; I0) ⊆ X . (One technique to guarantee this assumption
in our reachability computations will be demonstrated in Section IV.)
3). The infinity norms of matrices ∂g(x,d)

∂x
, ∂f(x,y,d)

∂x
, and ∂f(x,y,d)

∂y
are

uniformly bounded for (x,y,d) ∈ X × X ×D, i.e., ‖ ∂g(x,d)
∂x

‖∞ ≤
M,′ ‖ ∂f(x,y,d)

∂x
‖∞ ≤ M, ‖ ∂f(x,y,d)

∂y
‖∞ ≤ N, where M ′, M, and N

are positive real numbers. Sinceg ∈ C1(X ×D) andf ∈ C1(X × X ×
D), M ′, M, and N exist.

III. REACH SETS COMPUTATION

This section presents the set-boundary reachability method to com-
pute overapproximations of the set Ω1(t; I0) and underapproximations
of the set Ω2(t; I0) for a class of systems of the form (1). This class of
DDEs exhibits solution mappings featuring the local homeomorphism
property with respect to initial states. We first derive a constraint on the
time-lag term τ of DDE (1) such that the homeomorphism property is
guaranteed. Then, we topologically prove that the boundaries of sets
Ω1(t; I0) and Ω2(t; I0) for such class of systems can be retrieved by
evolving the initial set’s boundary.

Theorem 1 presents the constraint on the time-lag term τ such that
system (1) exhibits solutions featuring the homeomorphism property
with respect to initial states.

Theorem 1: If the time-lag term τ of DDE (1) satisfies

τ ≤ min

{
ε− 1

εM ′R
,
R− 1

M ′R
,

ε− 1

εR(M +Nε)
,

R− 1

R(M +Nε)

}
(2)

where R > 1 and ε > 1, then the solution mapping φ(t; ·,d) : I0 →
Ω(t; I0,d) to system (1) is a homeomorphism between spaces I0 and
Ω(t; I0,d) for t ∈ [0,Kτ ] and d ∈ D̂.

The derivation of constraint (2) is based on the requirement that the
sensitivity matrix is strictly diagonally dominant as in [21]. It is shown
in Appendix. Comparing to [21, Th. 1], constraint (2) on the time-lag
term τ gets rid of the explicit dependency on the dimension n, thereby
avoiding possibly overly conservative requirement on τ such that the
solution to system (1) exhibits the local homeomorphism property when
the dimension n of system (1) is too large. The underlying reason is
that the derivation of constraint (2) only involves operations of the
infinity norm of matrices. However, the derivation in [21] involves
manipulating 2-norm, infinity norm and max norm of matrices and
their interconvertibility, thereby introducing the dimension n into the
estimate.

If τ satisfies (2), the solution mapping φ(t; ·,d) : I0 → Ω(t; I0,d)

to system (1), where t ∈ [0,Kτ ] and d ∈ D̂, maps the boundary and
interior of the initial set I0 onto the boundary and interior of the set
Ω(t; I0,d), respectively.
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A. Topological Analysis

In this section, we show that both reach sets Ω1(t; I0) and Ω2(t; I0)
can be retrieved by performing reachability analysis on the initial set’s
boundary for system (1) with τ satisfying condition (2) in Theorem 1.
We firstly show that the solutionφ(t;x0,d) is continuous overx0 ∈ I0

and d ∈ D̂.
Lemma 1: If limk→∞ dk(s) = d(s) point-wise over s ∈ [0,Kτ ]

and limk→∞ xk,0 = x0, where dk ∈ D̂ and xk,0 ∈ I0, then
limk→∞ φ(t;xk,0,dk) = φ(t;x0,d) pointwise over t ∈ [0,Kτ ].

Proof: As pointwise limits of L-Lipschitz continuous functions are
L-Lipschitz continuous according to [17, Prop. 1.2.4], d ∈ D̂ holds.
Also, x0 ∈ I0.

We first prove this statement: Let (hk)k be a sequence of func-
tions with ‖hk‖ ≤ B, where hk : [0,Kτ ]× X → Rn is continuous
over t ∈ [0,Kτ ] and uniformly L′-Lipschitz continuous over x ∈
X for t ∈ [0,Kτ ]. If limk→∞ hk = h pointwise, x(·) : [0,Kτ ] →
X and xk(·) : [0,Kτ ] → X are respectively solutions to ẋ(s) =
h(s,x(s)) and ẋk(s) = hk(s,xk(s)), and x(δ) = limk→∞ xk(δ),
then limk→∞ xk(t) = x(t) pointwise on [δ,Kτ ] with δ ≥ 0.

Since x(t) and xk(t) satisfy x(t) = x(δ) +
∫ t

δ
h(s,x(s))ds

and xk(t) = xk(δ) +
∫ t

δ
hk(s,xk(s))ds, and ‖hk(s,x) −

hk(s,y)‖ ≤ L′‖x − y‖ for x,y ∈ X and s ∈ [0,Kτ ], we have
that ‖x(t) − xk(t)‖ ≤ ‖x(δ) − xk(δ)‖ +

∫ t

δ
‖h(s,x(s)) −

hk(s,x(s))‖ds +
∫ t

δ
‖hk(s,x(s)) − hk(s,xk(s))‖ds ≤ ‖x(δ) −

xk(δ)‖ +
∫ t

δ
‖h(s,x(s)) − hk(s,x(s))‖ds +

∫ t

δ
L′‖x(s) +

xk(s)‖ds. Since ‖x(δ) + xk(δ)‖ +
∫ t

δ
‖h(s,x(s)) − hk(s,x

(s))‖ds is nondecreasing with respect to t, Grönwall’s in-
equality implies ‖x(t) − xk(t)‖ ≤ eL

′t−L′δ‖x(δ) − xk(δ)‖ +
eL

′t−L′δ ∫ t

δ
‖h(s,x(s)) + hk(s,x(s))‖ds. Since ‖hk‖ ≤ B over

[0,Kτ ]×X and limk→∞ ‖h(s,x(s))− hk(s,x(s))‖ = 0 for s ∈
[0,Kτ ], limk→∞ xk(t) = x(t) point-wise on [δ,Kτ ] by dominated
convergence and x(δ) = limk→∞ xk(δ).

We now prove the lemma by induction on [0, iτ ], where 0 ≤
i ≤ K. Since g ∈ C1(X ×D) and Assumption 1 implying that
φ(·;xk,0,dk) : [0,Kτ ] → X and φ(·;x0,d) : [0,Kτ ] → X , we ob-
tain limk→∞ φ(t;xk,0,dk) = φ(t;x0,d) for t ∈ [0, τ ] by setting
h(s,x) := g(x,d(s)) and hk(s,x) := g(x,dk(s)).

Let limk→∞ φ(t;xk,0,dk) = φ(t;x0,d) pointwise for t ∈ [0, iτ ],
where 0 ≤ i ≤ K − 1, and limk→∞ xk,0 = x0, we next show
limk→∞ φ(t;xk,0,dk) = φ(t;x0,d) pointwise for t ∈ [0, (i+ 1)τ ].

We have that limk→∞ hk(s,x) = h(s,x) pointwise over
s ∈ [0, (i+ 1)τ ], where h(s,x) = f(x,φ(s− τ ;x0,d),d(s))
and hk(s,x) = f(x,φ(s− τ ;xk,0,dk),dk(s)). Also, since
f ∈ C1(X × X ×D), we have that hk and h satisfy the assumptions
in the above statement. Let

ẋ(s) = h (s,x(s)) ,x(iτ) = φ (iτ ;x0,d)

ẋk(s) = hk (s,x(s)) ,xk(iτ) = φ (iτ ;xk,0,dk) . (3)

Since limk→∞ xk(iτ) = x(iτ), we have limk→∞ φ(t;x0,k,dk) =
φ(t;x0,d) pointwise over t ∈ [iτ, (i+ 1)τ ] and thus
limk→∞ φ(t;x0,k,dk) = φ(t;x0,d) pointwise over t ∈
[0, (i+ 1)τ ]. �

Based on Lemma 1, we next show the compactness of reach sets
Ω1(t; I0) and Ω2(t; I0), where t ∈ [0,Kτ ].

Lemma 2: If I0 is compact, both reach setsΩ1(t; I0) andΩ2(t; I0)
are compact for t ∈ [0,Kτ ].

Proof: Since I0 ×D is bounded, and f ∈ C1(X × X ×D) and
g ∈ C1(X ×D), we have Ω1(t; I0) is bounded. Next we prove that
Ω1(t; I0) is closed. Let (xi)

∞
i=1 be a sequence withxi ∈ Ω1(t; I0) and

limi→∞ xi = y. Then there exists a sequence (x0,i,di)
∞
i=1 withx0,i ∈

I0 and di ∈ D̂ such that xi = φ(t;x0,i,di). Since (x0,i,di) ∈ I0 ×
D̂, according to Arzelà-Ascoli Theorem [15], we have that there exists
a uniformly convergent sub-sequence (x0,ik ,dik )

∞
k=1 in (x0,i,di)

∞
i=1.

Let x0 = limk→∞ x0,ik and d0(s) = limk→∞ dik (s) pointwise over
s ∈ [0, t]. Obviously, x0 ∈ I0. According to [17, Prop. 1.2.4], d0 ∈
D̂ holds. Thus, from Lemma 1, y = limk→∞ φ(t;x0,ik ,dik ) =

φ(t;x0,d0). Since x0 ∈ I0 and d0 ∈ D̂, y ∈ Ω1(t; I0) and thus
Ω1(t; I0) is closed.

In the following, we prove that Ω2(t; I0) is compact. Since
Ω2(t; I0) ⊆ Ω1(t; I0) andΩ1(t; I0) is compact,Ω2(t; I0) is bounded.
Therefore, we just show that Ω2(t; I0) is closed.

Assume that there exists a sequence (xi)
∞
i=1 with xi ∈ Ω2(t; I0)

and limi→∞ xi = y /∈ Ω2(t; I0). Without loss of generality, suppose
that y cannot be visited at time t > 0 by any trajectory to system (1)
subject to the perturbation d1 ∈ D̂ starting from the initial set I0 at
time 0.

Since xi ∈ Ω2(t; I0), there exists a corresponding se-
quence (xi,0)

∞
i=1 such that xi = φ(t;xi,0,d1). Also, limi→∞

φ(t;xi,0,d1) = y. Since I0 is compact, there exists a convergent
subsequence (xik,0)

∞
k=1 in (xi,0)

∞
i=1. Let x0 = limk→∞ xik,0. Obvi-

ously, x0 ∈ I0. According to Lemma 1, we obtain y = φ(t;x0,d1),
contradicting the assumption that y is not visited at time t > 0 by any
trajectory of system (1) subject to the perturbation d1 ∈ D̂ starting
from the initial set I0 at time 0. Thus, y ∈ Ω2(t; I0), implying
Ω2(t; I0) is closed. Therefore, Ω2(t; I0) is compact. �

Lastly, we present the core findings of this article, which are sepa-
rately stated in Theorems 2 and 3. Theorem 2 shows that any trajectory
starting from the boundary of the initial set I0 does not enter the interior
of the reach set Ω2(t; I0) for t ∈ [0,Kτ ]. Theorem 3 formulates that
each state in the boundary of the reach set Ω1(t; I0) (or, Ω2(t; I0))
can be visited at time t ∈ [0,Kτ ] by a trajectory originating from the
boundary of the initial set I0.

Theorem 2: Suppose that φ(t; ·,d) : I0 → Ω(t; I0,d) is a home-
omorphism between spaces I0 and Ω(t; I0,d) for d ∈ D̂ and t ∈
[0,Kτ ]. If I0 is compact and x0 ∈ ∂I0, φ(t;x0,d) /∈ Ω2(t; I0)

◦ for
d ∈ D̂.

Proof: Assume there exists d1 ∈ D̂ such that φ(t;x0,d1) ∈
Ω2(t; I0)

◦. Then there exists δ > 0 such that {x ∈ Rn | ‖x−
φ(t;x0,d1)‖ ≤ δ} ⊂ Ω2(t; I0).

Sinceφ(t; ·,d1) : I0 → Ω(t; I0,d1) is a homeomorphism between
spaces I0 and Ω(t; I0,d1), we have φ(t;x0,d1) ∈ ∂Ω(t; I0,d1).
Also, since Ω2(t; I0) ⊂ Ω(t; I0,d1), we obtain {x ∈ Rn |
‖φ(t;x0,d1)− x‖ ≤ δ} ⊂ Ω(t; I0,d1), implying φ(t;x0,d1) ∈
Ω(t; I0,d1)

◦, contradicting φ(t;x0,d1) ∈ ∂Ω(t; I0,d1). Therefore,
Theorem 2 holds. �

Theorem 3: Suppose that I0 is compact and φ(t; ·,d) : I0 →
Ω(t; I0,d) is a homeomorphism between spaces I0 and Ω(t; I0,d)

for t ∈ [0,Kτ ] and d ∈ D̂. 1). If x ∈ ∂Ω1(t; I0), there exist x0 ∈ I0

and d ∈ D̂ such that x = φ(t;x0,d). Moreover, x0 ∈ ∂I0 holds.
2). If x ∈ ∂Ω2(t; I0), there exist x0 ∈ ∂I0 and d ∈ D̂ such that
x = φ(t;x0,d).

Proof: 1) From Lemma 2, Ω1(t; I0) is compact. Thus, there exist
x0 ∈ I0 and d ∈ D̂ such that x = φ(t;x0,d).

Assume thatx ∈ ∂Ω1(t; I0) is visited at time t > 0 by a trajectory to
system (1) subject to the perturbation d ∈ D̂ originating fromx0 ∈ I◦

0,
i.e., x = φ(t;x0,d).

Since φ(t; ·,d) : I0 → Ω(t; I0,d) is a homeomorphism between
spaces I0 and Ω(t; I0,d), we have x ∈ Ω(t; I0,d)

◦. Also, since
Ω(t; I0,d) ⊂ Ω1(t; I0), x ∈ Ω1(t; I0)

◦ holds, which contradicts x ∈
∂Ω1(t; I0). Therefore, x0 ∈ ∂I0.
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2) According to Lemma 2, Ω2(t; I0) is compact. Thus, for any d ∈
D̂, there exists xd

0 ∈ I0 such that x = φ(t;xd
0 ,d).

Assume that xd
0 ∈ I◦

0 for d ∈ D̂. Obviously, x ∈ Ω1(t; I0)
◦

since x ∈ Ω(t; I0,d)
◦ and Ω(t; I0,d) ⊆ Ω1(t; I0). We denote

the reverse map of φ(t; ·,d) : I0 → Ω(t; I0,d) by φ−1(t; ·,d) :
Ω(t; I0,d) → I0. Therefore, φ−1(t;x,d) ∈ I◦

0 for d ∈ D̂.
It is obvious that inf

d∈D̂ dist(φ−1(t;x,d), ∂I0) ≥ 0, where
dist(φ−1(t;x,d), ∂I0) = infz∈∂I0 ‖φ−1(t;x,d)− z‖.

Next, we show that φ−1(t;x,d) is continuous over d ∈ D̂
and x ∈ Ω1(t; I0). Let limk→∞ dk(s) = d(s) pointwise for s ∈
[0, t] and limk→∞ xk = x with dk ∈ D̂ and xk ∈ Ω1(t; I0), x0 =
φ−1(t;x,d) and x0,k = φ−1(t;xk,dk), i.e., x = φ(t;x0,d) and
xk = φ(t;x0,k,dk). We have that x0 ∈ I0 and x0,k ∈ I0. We first
prove that the sequence (x0,k)

∞
k=1 converges. If (x0,k)

∞
k=1 diverges,

there exist two convergent subsequences (x0,k1
i
)∞i=1 and (x0,k2

i
)∞i=1

such that

lim
i→∞

x0,k1
i
�= lim

i→∞
x0,k2

i
. (4)

Let limi→∞ x0,k1
i
= a and limi→∞ x0,k2

i
= b. Obviously,

a ∈ I0 and b ∈ I0. However, Lemma 1 implies x =
limi→∞ φ(t;x0,k1

i
,dk1

i
) = φ(t;a,d) = φ(t; b,d) and thus a = b,

contradicting (4). Thus, the sequence (x0,k)
∞
k=1 converges,

and further Lemma 1 implies x = limk→∞ φ(t;x0,k,dk) =
φ(t; limk→∞ x0,k, limk→∞ dk) = φ(t; limk→∞ x0,k,d), im-
plying x0 = limk→∞ x0,k and thus limk→∞ φ−1(t;xk,dk) =

φ−1(t;x,d). We show below that there exists d′ ∈ D̂ such that
dist(φ−1(t;x,d′), ∂I0) = inf

d∈D̂ dist(φ−1(t; x,d), ∂I0). Since

D̂ is compact, dist(·, ∂I0) : Rn → R is continuous and
φ−1(t;x,d) is continuous over d ∈ D̂, there exists d′ ∈ D̂ such
that dist(φ−1(t;x,d′), ∂I0) = inf

d∈D̂ dist(φ−1(t;x,d), ∂I0).

The assumption that φ−1(t;x,d) ∈ I◦
0 for d ∈ D̂ implies

φ−1(t;x,d′) ∈ I◦
0 and thus there exists ε1 > 0 such that

dist(φ−1(t;x,d′), ∂I0) ≥ ε1. Thus, dist(φ−1(t;x,d), ∂I0) ≥ ε1
for d ∈ D̂.

Therefore, for every d ∈ D̂, there exists δd > 0 such that
φ−1(t;y, d̃) ∈ I0 for y ∈ B(x; δd) and d̃ ∈ B(d; δd), where
B(x; δd) = {y ∈ Rn | ‖y − x‖ ≤ δd} and B(d; δd) = {d̃ ∈ D̂ |
‖d(s)− d̃(s)‖ ≤ δd for s ∈ [0, t]}. Since D̂ is compact with respect
to uniform norm, there exists a finite sequence (δdi

)Ni=1 such that
D̂ ⊆ ∪N

i=1B(di; δdi
) and φ−1(t;y, d̃) ∈ I0 for y ∈ B(x; δdi

) and
d̃ ∈ B(di; δdi

). Denoting δ := min1≤i≤N{δdi
}, we immediately have

that φ−1(t;y, d̃) ∈ I0 for y ∈ B(x; δ) and d̃ ∈ D̂. Consequently,
B(x; δ) ⊂ Ω2(t, I0), which contradicts x ∈ ∂Ω2(t, I0). Therefore,
we have that if x ∈ ∂Ω2(t; I0), there exist x0 ∈ ∂I0 and d ∈ D̂ such
that x = φ(t;x0,d). �

From Theorem 3, we conclude that the boundaries of both reach sets
Ω1(t; I0) and Ω2(t; I0) are included in the reach set Ω1(t; ∂I0) of the
initial set’s boundary, i.e., ∂Ω1(t; I0) ⊆ Ω1(t; ∂I0) and ∂Ω2(t; I0) ⊆
Ω1(t; ∂I0). According to [22, Lemma 1], Lemma 2, and Theorem 3,
an overapproximation of Ω1(t; I0) can be constructed by a set of the
polytopic form, which includesΩ1(t; ∂I0). Analogous to the algorithm
in [22], an underapproximation of Ω2(t; I0) could be constructed by
a set of the polytopic form, which excludes Ω1(t; ∂I0). The latter
statement is justified by Lemma 3 below along with Lemma 2 and
Theorem 3. Moreover, we observe from Theorem 2 that the means of
excluding Ω1(t; ∂I0) to estimate an underapproximation of Ω2(t; I0)
does not induce extra conservativeness since no trajectory starting
from ∂I0 at time 0 enters the interior of the reach set Ω2(t; I0) for
t ∈ [0,Kτ ].

Lemma 3: Assume that O ⊆ Rn is a compact set and P ⊆ Rn is
a compact convex polytope. If the boundary of O is a subset of the
enclosure of the complement of P , and the intersection of the interior
ofO and the interior ofP is not empty, thenP is an underapproximation
of O.

Lemma 3 is a variant of [22, Lemma 2], in which O is required to
be a simply connected compact set. However, Lemma 3 still can be
assured by following the proof of [22, Lemma 2]. Due to the space
limitation, we omit its proof herein.

B. Reach Sets Computation

In this section, we give a brief introduction on the set-boundary
reachability method for overapproximating the set Ω1(t; I0) and un-
derapproximating the set Ω2(t; I0) for system (1) with τ satisfying
condition (2) in Theorem 1, although one observes that this is a direct
extension of the method in [21]. Note that the set-boundary reachability
method just guides existing reachability methods to perform compu-
tations on the initial set’s boundary. It helps to reduce computational
burden through reduction of volume of the initial set when performing
reachability analysis, especially for cases with large initial sets and/or
large time horizons. Demonstrating its benefits is not the focus of this
article since they were fully demonstrated in our previous works [18],
[21].

Assume that the initial set’s boundary is represented as an union of l
subsets, i.e., ∂I0 = ∪l

i=1I0,i. For t ∈ [0, τ ], system (1) is governed by
ODE ẋ(t) = g(x(t),d(t)). Therefore, we can apply reach set compu-
tation methods such as [2] to the computation of an overapproximation
O(t; ∂I0) of the reach set of the initial set’s boundary ∂I0 for t ∈ [0, τ ],
where O(t; ∂I0) = ∪l

i=1O(t; I0,i) ∩ X . According to Theorem 3, the
boundaries of reach sets Ω1(t; I0) and Ω2(t; I0) can be visited by
trajectories of system (1) originating from the initial set’s boundary,
i.e., ∂Ω1(t; I0) ⊆ O(t; ∂I0) and ∂Ω2(t; I0) ⊆ O(t; ∂I0). According
to [22, Lemma 1] and Lemma 3, an overapproximation of the reach set
Ω1(t; I0) and underapproximation of the reach set Ω2(t; I0) could be
constructed by including and excluding the computed set O(t; ∂I0) of
the reach set of the initial set’s boundary respectively. Based on above
computations for the initial trajectory segment up to time τ , the follow-
ing steps are used to compute an over- and underapproximation of the
reach sets Ω1(t; I0) and Ω2(t; I0), respectively for t ∈ [kτ, (k + 1)τ ],
k = 1, . . . ,K − 1.
1) We compute an overapproximationO(t; ∂I0) of the reach set of the

initial set’s boundary at time t. This can be done in the following
way: We compute an overapproximation O(t; I0,i) of the reach
set Ω1(t; I0,i) for system (1) with the initial set O(kτ ; I0,i),
i = 1, . . . , l. This overapproximation can be computed by ap-
plying existing reachability analysis methods for ODEs subject
to time-varying perturbation inputs xτ ∈ O(t− τ ; I0,i) ∩ X and
d ∈ D̂. Therefore, O(t; ∂I0) = ∪m

i=1O(t; I0,i) ∩ X is an over-
approximation of the reach set of the initial set’s boundary, i.e.,
Ω1(t; ∂I0) ⊆ O(t; ∂I0). According to Theorem 3, the boundaries
of reach sets Ω1(t; I0) and Ω2(t; I0) can be visited by trajectories
of system (1) originating from the initial set’s boundary. Conse-
quently, ∂Ω1(t; I0) ⊆ O(t; ∂I0) and ∂Ω2(t; I0) ⊆ O(t; ∂I0).
The following two steps compute an overapproximation of the
reach set Ω1(t; I0) and an underapproximation of the reach set
Ω2(t; I0) by including and excluding the obtained overapproxi-
mation O(t; ∂I0), respectively.

2) We compute a compact polytope Ok,t such that it covers the
computed overapproximation O(t; ∂I0). The set Ok,t is an over-
approximation of the reach set Ω1(t; ∂I0) according to [22,
Lemma 1].
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Fig. 1. Reach sets for Example 1. Left: Red, purple, green,
and yellow curves denote the boundary of ∪t∈[0,10.0]O(t; I0,1),
∪t∈[0,10.0]O(t; I0,2), ∪t∈[0,10.0]O(t; I0,3), and ∪t∈[0,10.0]O(t; I0,4), re-
spectively. Right: Red, purple, green, and yellow curves denote
∂O(10; I0,1), ∂O(10; I0,2), ∂O(10; I0,3), and ∂O(10; I0,4), respec-
tively. Blue and black curves denote ∂O(10; I0) and ∂U(10; I0),
respectively.

3) We compute a compact polytope Uk,t satisfying these two con-
ditions. a) The computed overapproximation O(t; ∂I0) is a sub-
set of the enclosure of its complement. Based on linear pro-
grams as in [22], such Uk,t can be computed by shrinking the
overapproximation Ok,t obtained in step 2) such that the enclo-
sure of its complement includes the overapproximation O(t; ∂I0).
b) Its interior intersects the interior of reach set Ω(t; I0,d) for
d ∈ D̂. For such sake, we first extract x0 ∈ I◦

0, then compute
an overapproximation O(t;x0) of the reach set Ω1(t;x0) of
the state x0 at time t. Finally, we verify whether O(t;x0) is
included in U◦

k,t. If O(t;x0) is a subset of the interior of the

set U◦
k,t, we obtain that U◦

k,t ∩Ω(t; I0,d)
◦ �= ∅ for d ∈ D̂ and

consequentlyUk,t ⊆ Ω(t; I0,d) ford ∈ D̂ according to Lemma 3.
Thus,Uk,t ⊆ ∩

d∈D̂Ω(t; I0,d) = Ω2(t; I0) and consequently Uk,t

is an underapproximation of the reach set Ω2(t; I0).

IV. EXAMPLES AND DISCUSSIONS

In this section, we evaluate our set-boundary reachability analysis
method on three examples of two two-dimensional systems and one
seven-dimensional system. All computations were carried out on an
i7-7500 U 2.70 GHz CPU with 32 GB RAM running Windows 10.

Example 1: Consider a simple two-dimensional system of the
form (1), where g(x, d) = (g1(x, d), g2(x, d))� = (−0.1y + dx,
−0.01x+ 0.02y)�, f(x, xτ , d) = (f1(x, xτ , d), f2(x, xτ , d))� =
(−0.1y + dx, −0.01xτ + 0.02y)�,D = [−0.01, 0.01], X = [−100,
100]× [−100, 100] and I0 = [0.1, 0.3]× [0.1, 0.3] with ∂I0 =
∪4
i=1I0,i, where I0,1 = [0.1, 0.1]× [0.1, 0.3], I0,2 = [0.3, 0.3]× [0.1,

0.3], I0,3 = [0.1, 0.3]× [0.1, 0.1] and I0,4 = [0.1, 0.3]× [0.3, 0.3].
In this example, M ′ = 0.11, M = 0.11, N = 0.01, R = 2, and

ε = 4. Actually, the presence of X is not necessary since M ′ = 0.11,
M = 0.11, N = 0.01, R = 2, and ε = 2 hold true over x ∈ Rn and
xτ ∈ Rn. Through simple calculations, τ ≤ 2.50 satisfies Theorem 1.
Note that if we use the condition in [21] to estimate τ , via sim-
ple calculations with ‖ ∂g(x,d)

∂x
‖max = 0.1, ‖ ∂f(x,xτ ,d)

∂x
‖max = 0.1,

‖ ∂f(x,xτ ,d)
∂xτ

‖max = 0.01, R = 2, and ε = 2, we have τ ≤ 0.66.
Let τ = 1 and K = 10, we perform reachability analysis for this

example. The computed overapproximation∪t∈[0,10.0]O(t; ∂I0) of the
reach set of the initial set’s boundary is illustrated in Fig. 1, which also
shows the computed over- and underapproximations at time t = 10 as
well as the corresponding overapproximation of the reach set of the
initial set’s boundary. The computation time is 15.53 s.

Based on this example, we motivate our study of over- and under-
approximations of interest in this article. Suppose the dynamics of a

Fig. 2. Reach sets of the set ∂I0 for Example 2. Red, purple, green,
and yellow regions denote ∪t∈[0,5.0]O(t; I0,1), ∪t∈[0,5.0]O(t; I0,2),
∪t∈[0,5.0]O(t; I0,3), and ∪t∈[0,5.0]O(t; I0,4), respectively.

physical system are captured by this perturbed DDE. Unfortunately,
this perturbation input is not known exactly. We wish to verify whether
the physical system does not enter a set of unsafe states Xu at time
t = 10. IfXu = [0.15, 0.2]× [0.3, 0.35], we conclude that the physical
system starting from the initial setI0 is robustly safe since the computed
overapproximation O(10; I0) does not intersect Xu, which can be
observed from Fig. 1. In contrast, if Xu = [0, 0.05]× [0.25, 0.3], we
observe from Fig. 1 that the computed underapproximation intersects
Xu. This indicates that the physical system starting from the initial set
I0 will touch Xu at time t = 10 regardless of the actual perturbation
and consequently it is robustly unsafe.

Example 2: Consider a system, which is adapted from [21],
of the form (1), where g(x,d) = (g1(x,d), g2(x,d))

� =
(y,−0.2x+ 2.0y − 0.2x2y + d)�, f(x,xτ ,d) = (f1(x,xτ ,d),
f2(x,xτ ,d))

� = (y,−0.2xτ + 2.0y − 0.2x2y + d)�, D = [−0.01,
0.01], X = [0.5, 5]× [−1.5, 3.5], I0 = [0.9, 1.1]× [0.9, 1.1]
with ∂I0 = ∪4

i=1I0,i, where I0,1 = [0.9, 0.9]× [0.9, 1.1],
I0,2 = [1.1, 1.1]× [0.9, 1.1], I0,3 = [0.9, 1.1]× [0.9, 0.9], and
I0,4 = [0.9, 1.1]× [1.1, 1.1].

In this example, M ′ = 12.0,M = 12.0, N = 0.2, R = 2, and ε =
2. Through simple calculations, τ = 0.02 satisfies Theorem 1. K
is assigned to 250 and thus the entire time interval is [0, 5.0]. If
using the condition in [21] to estimate τ with ‖ ∂g(x,d)

∂x
‖max = 7.2,

‖ ∂f(x,xτ ,d)
∂x

‖max = 7, ‖ ∂f(x,xτ ,d)
∂xτ

‖max = 0.2,R = 2, and ε = 2, we
have τ ≤ 0.008.

We observe that the computed overapproximation
∪t∈[0,5.0]O(t; ∂I0) is included in X as illustrated in Fig. 2. Unlike
that in step 1) in Section III-B, ∪t∈[0,5.0]O(t; ∂I0) illustrated in
Fig. 2 is equal to ∪4

i=1 ∪t∈[0,5.0] O(t; I0,i) and is computed without
the assumption that this system starting from I0 evolves in the
viable domain X within the time interval [0, 5.0]. According to [18,
Lemma 1], ∪t∈[0,5.0]Ω1(t; I0) ⊂ X in Assumption 1 is guaranteed.

An illustration of the computed over- and underapproximations at
time t = 0.8, 1.0, 1.2, 1.4 is demonstrated in Fig. 3, which also shows
the corresponding overapproximation of the reach set of the initial set’s
boundary. From Fig. 3, we observe that the computed underapproxima-
tion tends to be empty with the time horizon expanding. This contrasts
with the wrapping effect in overapproximating the reach set. The
computed underapproximation at time t = 1.4 becomes small as shown
in Fig. 3. We did not yield an underapproximation at time t = 5.0,
thereby only an overapproximation at time t = 5.0 is showcased in
Fig. 3. The computation time for this reachability analysis is 320.56 s.
Partitioning the initial set‘s boundary into small subsets and performing
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Fig. 3. Left (reach sets for Example 2 when t = 0.8, 1.0, 1.2, 1.4):
Red, purple, green, and yellow curves denote ∂O(t; I0,1), ∂O(t; I0,2),
∂O(t; I0,3), and ∂O(t; I0,4), respectively. Blue curve denotes
∂O(t; I0). Black curve denotes ∂U(t; I0). Right (reach sets of the
initial set’s boundary for Example 2 at time t = 5.0): Red, purple,
green, and blue curves denote ∂O(t; I0,1), ∂O(t; I0,2), ∂O(t; I0,3), and
∂O(t; I0,4), respectively. Blue curve denotes ∂O(t; I0).

reachability analysis on each subset independently would help reduce
the wrapping effect in overapproximating the reach set of the initial
set’s boundary, thereby having the possibility to construct a nonempty
underapproximation of the set Ω2(5.0; I0) as well as a more accurate
overapproximation of the set Ω1(5.0; I0).

Example 3: Consider a seven-dimensional system adapted
from [21], where g(x, d) = 0, f(x, xτ , d) = (1.4x3 − 0.9x1,τ ,
2.5x5 − 1.5x2, 0.6x7 − 0.8x3x2, d− 1.3x4x3, 0.7x1 − 1.0x4

x5, 0.3x1 − 3.1x6, 1.8x6 − 1.5x7x2)
�, I0 = [1.1, 1.3]× [0.95,

1.15]× [1.4, 1.6]× [2.3, 2.5]× [0.9, 1.1]× [0.0, 0.2]× [0.35,
0.55], X = [0.5, 1.5]× [0.5, 1.5]× [1.0, 2.0]× [2.0, 3.0]× [0.5,
1.5]× [0.0, 0.5]× [0.0, 1.0], and D = [1.9, 2.1].

Via simple calculations, we obtain M ′ = 0,M = 6.5, N = 0.9,
R = 2, and ε = 2 and thus τ ≤ 0.03 satisfies the requirement in
Theorem 1. Also, τ and K are assigned to 0.02 and 5, respectively, and
thus the entire time interval is [0,0.1]. If using the condition in [21] with
‖ ∂g(x,d)

∂x
‖max = 0,‖ ∂f(x,xτ ,d)

∂x
‖max = 3.9,‖ ∂f(x,xτ ,d)

∂xτ
‖max = 0.9,

R = 2, and ε = 2, we have τ ≤ 8.95× 10−4.
We use the same technique as in Example 2 to verify the assumption

that ∪t∈[0,0.1]Ω1(t; I0) ⊂ X . The computed overapproximation of
Ω1(0.1; I0) is O(0.1; I0) = [1.1556, 1.3955]× [1.0016, 1.2165]×
[1.3106, 1.5286]× [2.0898, 2.3308]× [0.7957, 0.9946]× [0.02403,
0.1847]× [0.3017, 0.5164], and the computed underapproximation of
Ω2(0.1; I0) is U(0.1; I0) = [1.2242, 1.3268]× [1.0703, 1.1478]×
[1.3792, 1.4600]× [2.1585, 2.2621]× [0.8644, 0.9259]× [0.0927,
0.1161]× [0.3704, 0.4478].

For this system having variables x of seven dimension, we compute
an interval overapproximation O(0.1; I0) and underapproximation
U(0.1; I0), respectively. As opposed to polytopic representations, the
interval representation may be simpler and more conservative, but
the overall computation time consumed is admissible, which is just
130.21 s.

Based on Examples 1–3, we found that condition (2) indeed helps
to achieve a reasonable improvement on the bound of the term τ
over the condition in [21], by comparing the bounds obtained by
condition (2) and the condition in [21]. We should point out here
that the constraints τ ≤ 0.66, τ ≤ 0.008, and τ ≤ 8.95× 10−4 for
Examples 1–3, respectively, are obtained based on the condition in
the revised version of [21], which can be downloaded from http:
//lcs.ios.ac.cn/\,xuebai/Publications.html. The underlying reason for
this improvement is that the derivation of condition (2) only involves
operations of the infinity norm of matrices, as reflected in the proofs
of Lemmas 5 and 6. However, the derivation in [21] involves manip-
ulating 2-norm, infinity norm, and max norm of matrices and their

nonequivalent interconvertibility, thereby introducing conservative-
ness. Please refer to [21, Lemmas 2 and 3] for details. Furthermore,
some potential reasons, why the upper bound obtained from condition
(2) is still small for certain cases, are presented here. 1) The exact upper
bound is not known and thus the conservativeness of condition (2)
cannot be evaluated. 2) The way to estimate the time-lag term such that
the sensitivity matrices are strictly diagonally dominant is not the best.
Actually, it is enough to estimate it such that the sensitivity matrices
are invertible, as reflected in Corollary 1. However, how to derive such
a bound, which results in invertible sensitivity matrices which are not
necessarily strictly diagonally dominant, is still unclear.

V. CONCLUSION

In this article, we extended the set-boundary reachability analysis
method for perturbation-free ODEs to a class of DDEs subject to time-
varying Lipschitz continuous perturbations. Three illustrative examples
were employed to demonstrate the performance of our method.

APPENDIX

In Appendix, we show the derivation of Theorem 1. Its derivation
is based on the requirement that the sensitivity matrices are strictly
diagonally dominant.

A. Sensitivity Matrices

In this section, we introduce sensitivity matrices and associated
sensitivity equations.

When t ∈ [0, τ ], system (1) is governed by ODE ẋ(t) =

g(x(t),d(t))withd(·) ∈ D̂, its flow mappingφ(t;x0,d) as a function
of x0 is differentiable with respect to the initial state x0. Given a
perturbation input d ∈ D̂, the sensitivity matrix of solutions at time
t ∈ [0, τ ] with respect to initial conditions is sdx0

(t) = ∂φ(t;x0,d)
∂x0

,
which is the solution to ODE

ṡdx0
= Dgs

d
x0

, sdx0
(0) = I (5)

where sdx0
(t) ∈ Rn×n,Dg is the Jacobian matrix of vector fieldg along

the trajectory φ(t;x0,d), i.e., Dg = ∂g
∂x

|x=φ(t;x0,d), and I ∈ Rn×n

is the identity matrix.
Assume that the solution mapping φ(t;x0,d) of system (1) for

t ∈ [(k − 1)τ, kτ ] andx0 ∈ I0 could be equivalently reformulated as a
continuously differentiable function ψk−1(t;x((k − 1)τ), (k − 1)τ)
of the state variable x((k − 1)τ) ∈ Ω((k − 1)τ ; I0,d) and the time
variable t ∈ [(k − 1)τ, kτ ], where k ∈ {1, . . . ,K − 1} and x((k −
1)τ) = φ((k − 1)τ ;x0,d). Also, assume the determinant of the Ja-
cobian matrix of the mapping ψk−1(t;x((k − 1)τ), (k − 1)τ) with
respect to state x((k − 1)τ) ∈ Ω((k − 1)τ ; I0,d) is not zero for
t ∈ [(k − 1)τ, kτ ]. Then, we deduce what follows.

Lemma 4: Given the above assumptions and a perturbation input
d ∈ D̂, sdx(kτ)(t) =

∂x(t)
∂x(kτ)

for system (1) exists and satisfies the
following equation:

ṡdx(kτ)(t) =
∂f (x(t),xτ (t),d(t))

∂x(t)
sdx(kτ)(t)

+
∂f (x(t),xτ (t),d(t))

∂xτ (t)

∂xτ (t)

∂x(kτ)
(6)

where ṡdx(kτ) =
dsd

x(kτ)
(t)

d t
, t ∈ [kτ, (k + 1)τ ], sdx(kτ)(kτ) = I ∈

Rn×n, and x(kτ) ∈ Ω(kτ ; I0,d).
The proof of Lemma 4 is analogous to [21, Lemma 1].
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Corollary 1: For d ∈ D̂ and t ∈ [kτ, (k + 1)τ ], if the determi-
nant of sdx(kτ)(t) with respect to x(kτ) ∈ Ω(kτ ; I0,d) at time kτ

is not zero, where k ∈ {0, 1, . . . ,K − 1}, then x(t) = φ(t;x0,d) is
uniquely determined by x(kτ).

B. Bounding Time-Lag Terms

In this section, we derive condition (2) on τ in system (1), which
renders the sensitivity matrices introduced in Section VI-A strictly di-
agonally dominant. We begin with the time interval [0, τ ]. In the rest, we
denote |Aii| −

∑
j �=i |Aij | by Δi(A), 1 ≤ i ≤ n, where A ∈ Rn×n is

a matrix and Aij is the entry in the ith row and jth column of A.
Lemma 5: There exist R > 1 and ε > 1 such that if

τ ≤ min{ ε−1
εM ′R , R−1

M ′R}, the sensitivity matrix sdx0
(t) in (5) is

strictly diagonally dominant. Moreover, ‖sdx0
(t)‖∞ ≤ R and

max1≤i≤n
1

Δi(s
d
x0

(t))
≤ ε for t ∈ [0, τ ], d ∈ D̂ and x0 ∈ I0, where

M ′ is defined in Assumption 1.
Proof: Equation (5) tells that the diagonal element in the ith row

of sdx0
(t) for t ∈ [0, τ ] equals 1 +

∫ t

0
∂gi(x(s),d(s))

∂x(s)
∂x(s)
∂x0,i

ds, and the

element in the ith row and jth column equals
∫ t

0
∂gi(x(s),d(s))

∂x(s)
∂x(s)
∂x0,j

ds,

where j ∈ {1, . . . , n} \ {i}. Therefore, ‖sdx0
(t)‖∞ ≤ 1 +

τ [‖ ∂g(x,d)
∂x

‖∞ · ‖ ∂x
∂x0

‖∞ = 1 + τ [‖ ∂g(x,d)
∂x

‖∞ · ‖sdx0
(t)‖∞]. Since

‖ ∂g(x,d)
∂x

‖∞ ≤ M ′ for t ∈ [0, τ ] and d ∈ D, we have

‖sdx0
(t)‖∞ ≤ 1 + τM ′‖sdx0

(t)‖∞

implying that ‖sdx0
(t)‖∞ ≤ 1

1−τM ′ if 1− τM ′ > 0. Thus,

‖sdx0
(t)‖∞ ≤ R for t ∈ [0, τ ] and d ∈ D̂ if τ ≤ R−1

M ′R .

Since 1− ∫ t

0

∑n
j=1 | ∂gi(x(s),d(s))

∂x(s)
∂x(s)
∂x0,j

|ds and ‖sdx0
(t)‖∞ ≤

R, we have Δi(s
d
x0

(t)) is larger than 1−M ′Rτ , where∑n
j=1 | ∂gi(x,d)

∂x
∂x

∂x0,j
| ≤ M ′R can be inferred in the following

way:
∑n

j=1 | ∂gi(x(s),d(s))
∂x(s)

∂x(s)
∂x0,j

| ≤ ∑n
l=1[| ∂gi(x(s),d(s))

∂xl(s)
|∑n

j=1

| ∂xl(s)
∂x0,j

|] ≤ R
∑n

l=1 | ∂gi(x(s),d(s))
∂xl(s)

| ≤ M ′R. 1
1−M ′Rτ

≤ ε implies

τ ≤ ε−1
εM ′R . Therefore, if τ ≤ min{ ε−1

εM ′R , R−1
M ′R}, ‖sdx0

(t)‖∞ ≤ R
and max1≤i≤n

1
Δi(s

d
x0

(t))
≤ ε hold. Also, since τ ≤ ε−1

εM ′R ,

1−M ′Rτ > 0 holds and thus sdx0
(t) is strictly diagonally dominant

for t ∈ [0, τ ] and d ∈ D̂. �
Assume that sdx((k−1)τ)(t) is strictly diagonally dominant such

that ‖sdx((k−1)τ)(t)‖∞ ≤ R and max1≤i≤n
1

Δi(s
d
x((k−1)τ)

(t))
≤ ε for

t ∈ [(k − 1)τ, kτ ] and d ∈ D̂, where k ∈ {1, . . . ,K − 1}, ε > 1 and
R > 1. We construct a constraint on the time-lag term τ , which
renders the sensitivity matrix in (6) strictly diagonally dominant for
t ∈ [kτ, (k + 1)τ ] as follows.

Lemma 6: Given the above assumption, if the time-lag term τ
satisfies τ ≤ min{ ε−1

ε(MR+NRε)
, R−1
MR+NRε

}, where M and N are pre-

sented in Assumption 1, then sdx(kτ)(t) for t ∈ [kτ, (k + 1)τ ] and

d ∈ D̂ is strictly diagonally dominant with ‖sdx(kτ)(t)‖∞ ≤ R and

max1≤i≤n
1

Δi(s
d
x(kτ)

(t))
≤ ε.

Proof: Since sdx((k−1)τ)(t) is strictly diagonally dominant and

max1≤i≤n
1

Δi(s
d
x((k−1)τ)

(t))
≤ ε for t ∈ [(k − 1)τ, kτ ] and d ∈ D̂,

‖A−1(t)‖∞ ≤ ε holds [16], where A(t) = sdx((k−1)τ)(t), t ∈ [(k −
1)τ, kτ ], and k ∈ {1, . . . ,K − 1}. According to Lemma 4, sdx(kτ)(t)

for t ∈ [kτ, (k + 1)τ ] with respect to x(kτ) satisfies sdx(kτ)(t) = I +∫ t

kτ
[ ∂f(x(s),xτ (s),d(s))

∂x(s)
sdx (kτ) (s) +

∂f(x(s),xτ (s),d(s))
∂xτ (s)

∂xτ (s)
∂x (kτ)

]ds,

implying sdx(kτ)(t) = I +
∫ t

kτ
[ ∂f(x(s),xτ (s),d(s))

∂x(s)
sdx(kτ)(s) +

∂f(x(s),xτ (s),d(s))
∂xτ (s)

∂xτ (s)
∂x((k−1)τ)

∂x((k−1)τ)
∂x(kτ)

]ds.

Denote x(kτ) = (xkτ,1, . . . , xkτ,n)
�. Thus, the diagonal element

in the ith row of the matrix sdx(kτ)(t) for t ∈ [kτ, (k + 1)τ ] is equal

to1 +
∫ t

kτ
∂fi(x,xτ ,d)

∂x
∂x

∂xkτ,i
+ ∂fi(x,xτ ,d)

∂xτ

∂xτ
∂x((k−1)τ)

∂x((k−1)τ)
∂xkτ,i

]ds,

the element in the ith row and jth column is equal to∫ t

kτ
[ ∂fi(x,xτ ,d)

∂x
∂x

∂xkτ,j
+ ∂fi(x,xτ ,d)

∂xτ

∂xτ
∂x((k−1)τ)

∂x((k−1)τ)
∂xkτ,j

]ds, where

j ∈ {1, . . . , n} \ {i}. Therefore, ‖sdx(kτ)(t)‖∞ ≤ 1 +

τ [‖ ∂f(x,xτ ,d)
∂x

‖∞ ·‖ ∂x
∂xkτ

‖∞ + ‖ ∂f(x,xτ ,d)
∂xτ

‖∞ · ‖ ∂xτ
∂x((k−1)τ)

‖∞ ·
‖ ∂x((k−1)τ)

∂xkτ
‖∞] = 1 + τ [ ‖ ∂f(x,xτ ,d)

∂x
‖∞ · ‖ sdx(kτ)(t) ‖∞ +

‖ ∂f(x,xτ ,d)
∂xτ

‖∞ · ‖ ∂xτ
∂x((k−1)τ)

‖∞ · ‖ ∂x((k−1)τ)
∂xkτ

‖∞]. Also, since

‖ ∂f(x,xτ ,d)
∂x

‖∞ ≤ M , ‖ ∂f(x,xτ ,d)
∂xτ

‖∞ ≤ N , ‖ ∂xτ
∂x((k−1)τ)

‖∞ ≤ R and

‖ ∂x((k−1)τ)
∂xkτ

‖∞ ≤ ε for t ∈ [kτ, (k + 1)τ ] and d ∈ D, we have

‖sdx(kτ)(t)‖∞ ≤ 1 + τM‖sdx(kτ)(t)‖∞ + τNRε. (7)

Equation (7) implies that ‖sdx(kτ)(t)‖∞ ≤ 1+τNRε
1−τM

if 1− τM > 0.

Thus, ‖sdx(kτ)(t)‖∞ ≤ R for t ∈ [kτ, (k + 1)τ ] and d ∈ D̂ if τ ≤
R−1

MR+NRε
.

On the other side, since ‖sdx(kτ)(t)‖∞ ≤ R, Δi(s
d
x(kτ)(t))

is larger than 1− ∫ t

kτ

∑n
j=1 | ∂fi(x(s),xτ (s),d(s))

∂x(s)
∂x(s)

∂xkτ,j(s)
+

∂fi(x(s),xτ (s),d(s))
∂xτ (s)

∂xτ (s)
∂x((k−1)τ)

∂x((k−1)τ)
∂xkτ,j

|ds, which in turn

is larger than 1− (MR+NRε)τ , where the inequality∑n
j=1 | ∂fi(x(s),xτ (s),d(s))

∂x(s)
∂x(s)
∂xkτ,j

| ≤ MR can be inferred

in the following way:
∑n

j=1 | ∂fi(x(s),xτ (s),d(s))
∂x(s)

∂x(s)
∂xkτ,j

| ≤∑n
l=1[| ∂fi(x(s),xτ (s),d(s))

∂xl(s)
|∑n

j=1 | ∂xl(s)
∂xkτ,j

|] ≤
R
∑n

l=1 | ∂fi(x(s),xτ (s),d(s))
∂xl(s)

| ≤ MR. Similarly, we obtain∑n
j=1 | ∂fi(x(s),xτ (s),d(s))

∂xτ (s)
∂xτ (s)

∂x((k−1)τ)
∂x((k−1)τ)

∂xkτ,j
| ≤ NRε.

1
1−(MR+NRε)τ

≤ ε implies τ ≤ ε−1
ε(MR+NRε)

. Therefore,

if τ ≤ min{ ε−1
ε(MR+NRε)

, R−1
MR+NRε

},‖sdx(kτ)(t)‖∞ ≤ R and

max1≤i≤n
1

Δi(s
d
x(kτ)

(t))
≤ ε hold. Also, sdx(kτ)(t) is strictly diagonally

dominant for t ∈ [kτ, (k + 1)τ ] and d ∈ D̂ since τ ≤ ε−1
ε(MR+NRε)

,
1− (MR+NRε)τ > 0 holds. �

In summary, we have Theorem 1 via combining Lemmas 5 and 6.
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