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Abstract. Fixed points are mathematical objects that are commonly
employed in computer science to characterize key properties of iterative
or cyclic behaviors, e.g., unbounded loops and recursions in programs or
cycles in transition systems. Reasoning about such behaviors is arguably
the hardest task in formal verification. The problem is even harder for
stochastic systems as it often amounts to inferring quantitative fixed
points that are highly intractable in practice. This article surveys recent
advancements in fixed-point reasoning for stochastic systems modeled
as probabilistic programs, probabilistic transition systems, and stochas-
tic hybrid systems and outlines potential directions for future research
thereof. The core of our results is the fixed-point reasoning landscape for
stochastic systems, where we focus on formal techniques that either (i) es-
tablish sound over-/under-approximations of quantitative fixed points; or
(ii) infer the exact fixed points for a restricted class of systems.

Keywords: Quantitative verification · Fixed-point reasoning · Stochas-
tic systems · Markov models

1 Introduction

A fixed point [70] is a quantity that remains unchanged under a given transfor-
mation. In the theory of computation, it represents stability and self-reference,
as is the heart of recursion and iterative processes [90,93,1]. The employment
of fixed points in (theoretical) computer science was initiated by Scott in the
late 1960s to establish denotational semantics for λ-calculus [92]. Since then, the
theory of fixed points has witnessed various applications in characterizing key
properties of looping behaviors central to various computational models: The
least or greatest fixed point (in terms of a partial order) intrinsically represents
the set of reachable states in a transition system [4], the winning strategy of an
ω-regular game [87], and – in the stochastic setting – the stationary distribution
of a Markov chain [85] as well as the denotational semantics of a potentially
unbounded loop in probabilistic programs [65,75,56].

Computing the exact (least or greatest) fixed point is, nonetheless, highly in-
tractable or even impossible in practice, as it often requires an infinite or, in some
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cases, transfinite number of fixed-point iterations (see Section 2.2). The problem
is known to be harder for stochastic systems (see, e.g., [57]) where quantita-
tive properties are of particular interest, such as probabilities, expected values,
high-order moments, and concentrations. Consequently, existing techniques aim
to either (i) infer the exact quantitative fixed points for a restricted subclass of
systems; or (ii) establish sound over-/under-approximations of fixed points.

In this article, we sketch the quantitative fixed-point reasoning landscape for
stochastic systems. This landscape serves as a taxonomy of core formal techniques
for verifying, refuting, or synthesizing upper bounds (over-approximations), lower
bounds (under-approximations), or exact values for the least (or, dually, great-
est) fixed point. On top of the landscape, we survey recent advancements (in-
cluding our own results) in fixed-point reasoning for stochastic systems modeled
as probabilistic programs [64,44,76,11], probabilistic transition systems (more
specifically, Markov models [4,35]), and stochastic hybrid systems [51,24]. We
further identify a few initial attempts that aim to establish a unified fixed-point
reasoning framework for (part of) these system models. Based on the landscape,
we outline several open challenges and potential research directions.

Remark 1. The work surveyed in this article is far from being exhaustive consid-
ering especially the actively developing field of quantitative verification; our goal
is to provide interested readers with a bunch of pointers to navigate through the
rudimentary fixed-point reasoning landscape for stochastic systems. ◁

Paper structure. The rest of the paper is organized as follows. Section 2 recaps
mathematical foundations of fixed points with a main focus on established results
in domain theory. Section 3 presents our quantitative fixed-point reasoning land-
scape for stochastic systems, which is subsequently elaborated in Section 4 for
probabilistic programs, Section 5 for Markov models, and Section 6 for stochas-
tic hybrid systems. We then survey in Section 7 research attempts for providing
unified fixed-point reasoning frameworks across different system models. In Sec-
tion 8, we outline open challenges and potential directions for future research.
The paper is finally concluded in Section 9.

2 Mathematical Foundations of Fixed Points

This section formulates – in the realm of domain theory [93,1] – the fixed-point
reasoning problems and summarizes general reasoning techniques underpinning
the (quantitative) verification of iterative (or cyclic) behaviors in computer sci-
ence. It is briefly complemented by an alternative, well-established perspective
on fixed points in metric spaces [2] for formulating key properties of MDPs.

2.1 Fixed-Point Reasoning Problems
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Fig. 1: Examples of fixed points.

Intuitively, a fixed point of a function f : X →
Y is an element x ∈ X ∩ Y that is mapped to
itself by the function, namely,

f(x) = x .

As a simple example, the real-valued function3

λx. x3−x2−x+2 admits multiple fixed points
x = −

√
2, 1, and

√
2 as depicted in Fig. 1.

Fixed points are essential to computer science as they provide a neat mecha-
nism to characterize key properties of looping behaviors central to various com-
putational models, ranging from programs to state-transition systems: Their
self-reference nature – where the process revisits the same computational steps
under varying states – makes it particularly challenging for formally analyzing
such behaviors. Taking a (possibly unbounded) program loop as an example, the
technique of structural induction [102] can be used to precisely characterize the
loop’s semantics as a certain fixed point of the so-called characteristic function –
a monotonic operator mimicking the effect of unfolding the loop (more technical
details can be found in Section 4). Such characterization aids in understanding
and certifying key properties of looping behaviors, such as termination and cor-
rectness across diverse computational contexts. For instance, fixed points can
also be employed to encode the set of reachable states in a transition system [4]
and the stationary distribution of a Markov chain [85].

Below, we formalize several key problems in fixed-point reasoning leveraging
well-established tools in domain theory initiated by Scott in the late 1960s [92]:

A partially ordered set is a pair (P,⊑), where P is a (possibly infinite) carrier
set and ⊑ is a binary relation on P that is reflexive, transitive, and antisym-
metric. A complete lattice is a partially ordered set (L,⊑) in which every subset
S ⊆ L has both a supremum (aka least upper bound)

⊔
S ∈ L and an infimum

(aka greatest lower bound)
d

S ∈ L. Every complete lattice has a least and a
greatest element denoted by ⊥ and ⊤, respectively. Given two complete lattices
(L,⊑) and (L′,⊑′), a function f : L → L′ is monotonic iff for any x, y ∈ L, x ⊑ y
implies f(x) ⊑ f(y). Given a (monotonic) function f , a prefixed point is any x
such that f(x) ⊑ x; Analogously, a postfixed point is any x such that x ⊑ f(x).
A fixed point is a point that is both a pre- and a postfixed point, i.e., f(x) = x.

The Knaster-Tarski theorem [63,97,70] states that every monotonic function
(also referred to as operator) f admits a complete lattice of (possibly infinitely
many) fixed points, where we denote the least fixed point (LFP) by lfpf and the
greatest fixed point (GFP) by gfpf . Here is a concise example adapted from [13]:

Example 1 (Complete Lattice of Fixed Points). Consider a carrier set L =
{a, b, c} ordered by a ⊑ b ⊑ c and a monotonic operator f with f(a) = a, f(b) =

3 We use the λ-expression λx. M to denote an anonymous function which maps an
element m to M(x/m), i.e., the substitution of x by m in expression M .
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c, f(c) = c. Then, we have lfpf = a and gfpf = c, which are the only two fixed
points of f that trivially form a complete lattice. ◁

Due to the mathematical duality between lfpf and gfpf [97], we focus on the
least fixed point lfpf throughout the rest of the paper. The fixed-point verification
problems, in general lattice-theoretic terms, can then be formulated as follows.

Given a complete lattice (L,⊑), a monotonic operator f : L → L,
and candidate lower bound l ∈ L, upper bound u ∈ L, LFP I ∈ L, determine

l
(i)
⊑ lfpf

(iii)
= I

(ii)
⊑ u , where (†)

(i) Lower-bound verification: prove that l ⊑ lfpf ;
(ii) Upper-bound verification: prove that lfpf ⊑ u ;
(iii) LFP verification: prove that lfpf = I .

We remark that some techniques in the literature are proposed to address the
refutation counterpart of the above verification problems, e.g., latticed bounded
model checking [13] for refuting upper bounds on lfpf , i.e., for certifying lfpf ̸⊑ u.
In contrast to the verification perspective, the fixed-point synthesis problems aim
to generate l, u, I ∈ L such that Eq. (†) holds. In this paper, the term fixed-point
reasoning refers to both problems of fixed-point verification and synthesis.

2.2 General Fixed-Point Reasoning Techniques

There exists in the literature a vast array of fixed-point theorems [70] pertaining
to different branches of mathematics, e.g., domain theory, algebraic geometry,
topology, and logics.4 For the former, in particular, the Kleene fixed-point theo-
rem [1,70] provides a constructive means of obtaining the LFP of continuous op-
erators. An operator f is continuous (aka Scott-continuous) if, for any ascending
chain H = {h1 ⊑ h2 ⊑ · · · } over the complete lattice (L,⊑), f(

⊔
H) =

⊔
f(H),

where f(H) is the shorthand for {f(h) | h ∈ H}. Note that every continuous
operator is monotonic [56, Theorem A.4]. The Kleene fixed-point theorem states
that the LFP of any continuous operator f exists and can be constructed using
fixed-point iteration from the least element ⊥ ∈ L:

lfpf =
⊔

n∈N
fn(⊥) = limn→ω fn(⊥) . (‡)

This result has been further extended by Cousot and Cousot in [33] to monotonic
(not necessarily continuous) operators via transfinite iterations.

The fixed-point iteration (‡) à la Kleene fixed-point theorem provides a simple
mechanism to verify lower bounds or to refute upper bounds on least fixed points:
One can certify (i) l ⊑ lfpf by finding k ∈ N such that l ⊑ fk(⊥); and (ii) lfpf ̸⊑ u

4 We call these results general techniques as they are often expressed in an abstract,
mathematical manner that is not tied to a concrete application in formal verification.
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Fig. 2: Intuition of the soundness of Park induction (left branch) and the unsoundness
of simple lower induction (right branch) [37]. An arrow from h1 ∈ L to h2 ∈ L indicates
h1 ⊑ h2. For Park induction, the iteration of f on u converges downwards to a fixed
point of f which is – by the Knaster-Tarski theorem – necessarily above lfpf . For simple
lower induction, however, the ascending chain l ⊑ f(l) ⊑ · · · converges to a fixed point
of f which is necessarily below gfpf , but we do not know how l compares to lfpf .

by finding k ∈ N such that fk(⊥) ̸⊑ u. The former constitutes the basis of
value iteration [5,86,50] – a well-known technique for determining reachability
probabilities in finite Markov models (see Section 5); Whilst the latter underpins
latticed bounded model checking [13] – a latticed analogue of the well-established
technique of bounded model checking [20,32,19].

However, reasoning about the LFP through fixed-point iteration as per Eq. (‡)
is deemed inefficient in practice due to its iterative nature. In contrast, the Park
induction principle [83] gives an elegant way of verifying upper bounds on LFPs:

f(u) ⊑ u implies lfpf ⊑ u , (1)

i.e., if pushing a candidate upper bound u through the (monotonic) operator
f once yields a smaller element in terms of ⊑, then we have verified that u
indeed upper-bounds lfpf ; see an illustration of the soundness of Park induction
in (the left branch) Fig. 2. For instance, in Example 1, we can assert lfpf ⊑ c
since f(c) ⊑ c. However, Park induction does not suffice to establish lfpf ⊑ b
(which is true as lfpf = a ⊑ b) because f(b) = c ̸⊑ b. To remedy this, Batz et
al. [13] proposed a strictly more general proof rule called latticed k-induction (or
κ-induction, as an extension of k-induction [94]) stating that, for any k ∈ N,

f
(
Ψk
u (u)

)
⊑ u implies lfpf ⊑ u , (2)

where Ψu : L → L is the κ-induction operator that maps every element h ∈ L
to f(h) ⊓ h. The key idea behind Eq. (2) is to rectify f(u) by “pulling it down”
– via taking the greatest lower bound with u – in the hope that the rectified
element Ψu(u) satisfies Park induction and thus the candidate upper bound u
can be verified. Albeit being strictly more general than Park induction, latticed
k-induction remains incomplete:5 Recall Example 1, the valid upper bound b can
never be proved by κ-induction since, for any k ∈ N, Ψk

b (b) = b but f(b) = c ̸⊑ b.
Next, we investigate induction rules for establishing lower bounds. It is not

hard to show that a “dual” version of Park induction – by flipping ⊑ in Eq. (1)
5 Completeness holds in the transfinite setting assuming unique fixed point [13].
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– works for certifying lower bounds on the greatest fixed point gfpf , but not on
lfpf . More concretely, for l ∈ L, the simple lower induction rule

l ⊑ f(l) implies l ⊑ lfpf ,  

is unsound in general; see an illustration in (the right branch of) Fig. 2.
To obtain sound proof rules for establishing lower bounds on LFPs, Hark

et al. [47] proposed to retrieve the soundness of lower induction by adding side
conditions therein capturing the notion of uniform integrability from stochastic
processes. Baldan et al. [6] proposed alternative proof rules for specific lattices
of the form MY , where Y is a finite set and M is a special kind of lattice with
an algebraic structure called MV-algebra [79]; The basic idea is as follows: For
a non-expansive (and thus monotonic) function f : MY → MY , each candidate
lower bound l on lfpf is associated with a map f l

∗ : 2
[Y ]l=f(l) → 2[Y ]l=f(l) , where

[Y ]l=f(l) denotes the set {y ∈ Y | l(y) ̸= ⊥ and l(y) = f(l)(y)}.6 If l is a postfixed
point, i.e., l ⊑ f(l), and gfpf l

∗ = ∅, then we have l ⊑ lfpf . This proof rule is a
consequence of the following result on verifying candidates for the exact LFP :

Given a non-expansive function f : MY → MY and an LFP candidate I ∈ MY

with f(I) = I, Baldan et al. (ibid.) associate I with a function f I
# : 2Y → 2Y ,

whose greatest fixed point gfpf I
# intuitively encodes the potential for increasing

I by adding a constant. Thus, if f(I) = I and gfpf I
# = ∅, then lfpf = I. This

approach transforms the potentially infinite domain MY to the finite domain 2Y ,
thereby facilitating the verification of the LFP candidate. Furthermore, given
that I is a fixed point, the implication is reversible: gfpf I

# = ∅ is also a necessary
condition for lfpf = I.

Apart from verifying candidates for exact LFPs, Baldan et al. [7] also pro-
posed a game-theoretic approach to computing the exact LFP by solving a simple
parity game called fixpoint game, which provides a complete characterization of
the solutions of fixed-point equations over continuous lattices [91]. Such simple
parity games can be solved by, e.g., Jurdziński’s algorithm [55] together with
Calude et al.’s improvement [23].

Fixed points in metric spaces. Most fixed-point characterizations for discounted
properties of Markov decision processes (see Section 5) root in the Banach fixed-
point theorem (aka the contraction mapping theorem) [8] in the theory of met-
ric spaces [2]. A map f : X → X over a metric space (X, d) with metric d is
called a contraction mapping on X if there exists ϵ ∈ [0, 1) such that ∀x1, x2 ∈
X : d(f(x1), f(x2)) ≤ ϵd(x1, x2). The Banach fixed-point theorem states that
any contraction mapping f on a (non-empty) complete metric space [2] admits
a unique fixed point fpf ; Moreover, starting from an arbitrary element x0 ∈ X,
the sequence {fn(x0)}n∈N necessarily converges to the unique fixed point fpf .

Mardare et al. [74] extended the quantitative equational logic [73] for metric
spaces by incorporating fixed-point operators and approximate axioms. They

6 Consider l ∈ MY as a map Y → M.
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Fig. 3: The quantitative fixed-point reasoning landscape for stochastic systems.

introduced the concept of Banach pattern and established proof rules to cap-
ture contractiveness of functions and to reason about fixed points based on the
Banach fixed-point theorem.

3 The Quantitative Fixed-Point Reasoning Landscape

This section sketches our (again, far-from-exhaustive) fixed-point reasoning land-
scape for stochastic systems as depicted in Fig. 3, where we focus on core tech-
niques for verifying, refuting, or synthesizing upper bounds (over-approximations),
lower bounds (under-approximations), or exact values for the least fixed point
lfpf of a monotonic operator f (cf. Eq. (†)). More details of these techniques as
well as a set of closely related works will be examined in subsequent sections.

The underlying stochastic models we consider include probabilistic programs
[64,44,76,11], probabilistic transition systems (more specifically, Markov models
[4,35]), and stochastic hybrid systems [51,24]. In particular, we emphasize the
quantitative nature of fixed-point reasoning techniques for these systems since
– in contrast to qualitative properties such as (Boolean) reachability and safety
– we are often concerned with quantities like assertion-violation probabilities
[100], expectations [75], moments [69,99,78], expected runtimes [59], and con-
centrations [25,27]. We will showcase the fixed-point encodings for a prominent
subset of these quantities in Sections 4 to 7.

Remark 2. Granted that the above-mentioned fields have been extensively stud-
ied for decades and numerous results are established thereof in terms of verifica-
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tion, refutation, or synthesis. However, we include in Fig. 3 only a selected subset
of related works where the problems are explicitly formulated using LFPs. ◁

4 Fixed-Point Reasoning for Probabilistic Programs

Probabilistic programming is a widely used paradigm to describe stochastic sys-
tems in the form of executable computer programs. It extends classical, deter-
ministic programming with abilities of random sampling and conditioning (via
posterior observations). The so-obtained probabilistic programs [64,44,76,11] are
typically normal-looking programs describing posterior probability distributions.
Reasoning about possibly unbounded loops – whose (denotational) semantics is
often characterized as the least fixed point of a certain monotonic operator –
is one of the most difficult tasks in the quantitative verification of probabilistic
programs. This section surveys recent advancements in this line of research using
a commonly studied probabilistic programming language called the probabilistic
guarded command language (pGCL) [75], which augments Dijkstra’s GCL [36]
with nondeterminism and randomness.

4.1 The Probabilistic Guarded Command Language

A pGCL program C, in general, adheres to the following grammar:

C ::= skip (effectless program)
| diverge (freeze)
| x := E (assignment)
| x :≈ µ (random assignment)
| C # C (sequential composition)
| if (φ){C} else {C} (conditional choice)
| {C} □ {C} (nondeterministic choice)
| {C} [p] {C} (probabilistic choice)
| while (φ){C} (while loop)
| observe (φ) (conditioning)

Here, x is a variable from a finite set Vars, E denotes an arithmetic expression, µ
is a probability distribution, and φ is a Boolean condition defined over program
variables. skip does nothing and simply continues the execution, while diverge
halts execution indefinitely. Assignments, such as x := E, update a variable x
with the result of E, and random assignments x :≈ µ assign a value to x sampled
from the distribution µ. Sequential composition C1 # C2 executes C1 followed by
C2. Conditional choice if (φ){C1} else {C2} selects C1 if φ evaluates to true and
C2 otherwise, while nondeterministic choice {C1} □ {C2} nondeterministically
selects between C1 and C2. Probabilistic choice {C1} [p] {C2} executes C1 with
probability p and C2 with probability 1 − p. Loop while (φ){C} repeatedly
execute C as long as φ evaluates to true. Finally, observe (φ) statement, restricts
execution to traces where φ holds.
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h := 1 #
while (h = 1 ) {

{ t := t+ 1 } [ 1/2 ] {h := 0 }
} #
observe ( t ≡ 1 (mod 2) )

Prog. 1: Odd geometric dist.
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Fig. 4: Snippets of the distribution of t in Prog. 1.

Example 2 (Odd Geometric Distribution [62]). Prog. 1 illustrates an iterative
algorithm that flips a fair coin while counting the number of trials (t) until a tail
(h = 0) is observed, and then conditions on t being odd. The conditioning-free
while loop

Loopgeo : while (h = 1){ t := t+ 1 [1/2] h := 0 }

generates a geometric distribution over variable t and variable h tracks the pres-
ence of a head (h = 1) or a tail (h = 0) in each trial. Following the Loopgeo, the
statement observe(t mod 2 = 1) filters out all runs where t is even, ensuring that
only odd values of t are considered. The interaction between the probabilistic
loop and post-execution conditioning is shown in Fig. 4.

4.2 Fixed-Point Semantics for Probabilistic Loops

The (denotational) semantics of a probabilistic loop is often characterized as
the least fixed point of a monotonic operator over a complete lattice structure.
We next present three well-known fixed-point encodings leveraging the weakest
preexpectation calculus and the expected runtime calculus (both are known as
backward semantics), as well as the semantics based on probability generating
functions (a typical forward semantics).

Weakest preexpectation. For a probabilistic program, a program state maps each
variable in Vars to Q. The set of all program states can thus be represented as
Σ = {σ : Vars → Q}. An expectation [56,75] is a mapping from program states
to R≥0, where R≥0 = {r ∈ R | r ≥ 0} ∪ {∞}, and the set of all expectations
is denoted as E =

{
e | e : Σ → R≥0

}
. There exists a complete lattice (E,⊑),

where the partial order ⊑ is defined pointwise: ∀e1, e2 ∈ E, e1 ⊑ e2 iff ∀σ ∈
Σ : e1(σ) ≤ e2(σ). The weakest preexpectation transformer [75] wpJ·K : Progs →
(E → E) provides a formal method for reasoning about the expected outcomes
of probabilistic programs. Let [φ] denote the casting of the Boolean expression φ
into an expectation. For a loop construct while (φ){C} and a postexpectation g,
the weakest preexpectation (WP) wpJwhile (φ){C}K(g) is the least fixed point
of the monotonic and continuous mapping

λX. [¬φ] · g + [φ] · wpJCK(X)
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on the complete lattice (E,⊑). For instance, In Example 2, weakest preexpecta-
tion of Loopgeo w.r.t. postexpectation t+h is the least fixed point of the mapping
λX. [h ̸= 1] · (t+ h) + [h = 1] · (1/2 ·X (t/t+ 1) + 1/2 ·X (h/0)), where X (x/e)
represents the substitution of variable x by expression e in expectation X.

Expected runtime. Kaminski et al. [58,59] proposed a wp-style calculus for an-
alyzing expected runtimes (ERT) of probabilistic programs. For a probabilistic
program C, the runtime maps each state σ to the average or expected runtime
of C. The space of all runtimes is defined as T = {t | t : Σ → R≥0}. Similar
to (E,⊑), the structure (T,⊑) also forms a complete lattice under a pointwise
partial order. The expected runtime transformer, ertJ·K : Progs → (T → T), is
defined analogously to the weakest preexpectation transformer. For a loop con-
struct while (φ){C}, assuming the runtime of the program segment following
this loop is f , the expected runtime of while (φ){C} up to the end of the
program is the least fixed point of the monotonic and continuous mapping

λX. 1 + [¬φ] · f + [φ] · ert[C](X)

on the complete lattice (T,⊑). In Example 2, the expected runtime of Loopgeo
is the least fixed point of the mapping λX. 1 + [h = 1] · (1 + 1/2 ·X (h/0) + 1/2 ·
X (t/t+ 1)).

In addition to expected runtime, there is also wp-style fixed-point encoding
for resource analysis of probabilistic programs [81], which is not elaborated here.

Probability generating functions. The representation of program variable distri-
butions can be expressed using probability generating functions (PGFs) [61,28],
probability density functions (PDFs) [43,52,80,17,18], or measures [64,34,104].
Here, we take PGFs as an example. A PGF encodes a possibly infinite-support
discrete distribution in the form of a formal power series:

F =
∑

n∈N
anX

n ,

where X is a formal indeterminate corresponding to program variable x and an
stands for the probability of x = n. For instance, the geometric distribution of
variable t in Example 2 can be encoded as the following PGF:

1

2
+

1

4
T +

1

8
T 2 +

1

16
T 3 +

1

32
T 4 +

1

64
T 5 +

1

128
T 6 + · · · .

Moreover, PGFs can compress infinite series into a closed form using Taylor’s
theorem: the above PGF can be represented in the closed form 1

2−T . This PGF is
in fact the least fixed point of the characteristic function of Loopgeo (with initial
values h = 1, t = 0) over a complete lattice of PGFs. The PGF technique has
been extended in [62] to cope with Bayesian inference with conditioning.

4.3 Reasoning about Fixed-Point Semantics

In this section, we introduce specific fixed-point reasoning techniques in the
semantics of probabilistic programs. To facilitate a unified discussion, we denote
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the complete lattice and monotonic and continuous mappings from Section 4.2
as (L,⊑) and Φ, respectively. Furthermore, we assume that Φ is a mapping on
(L,⊑).

Upper-bound Reasoning. Park Induction [83] provides a simple yet effective suf-
ficient condition for verifying upper bounds on least fixed points. The element
Isup ∈ L that satisfies the conditions of Park Induction is referred to as super-
invariant. Building on Park Induction, techniques for verifying upper bounds
have been further developed by synthesizing Isup ⊑ f , where f represents the
upper bound being verified. Notable contributions in this direction include the in-
stantiation of latticed k-induction for probabilistic programs [13]. Subsequently,
Batz et al. [12] proposed an efficient framework for inductive synthesis that
operates directly at the source-code level. This framework leverages a template-
based strategy in conjunction with a counterexample-guided inductive synthesis
(CEGIS) loop to automate the construction of Isup. The continuity of the oper-
ator Φ greatly facilitates upper bound refutation. Utilizing this property, Batz
et al. [13] introduced latticed bounded model checking and instantiated it in
tasks related to probabilistic programs. Representative works in upper bound
synthesis include upper ω-invariants [58,59] based on sequence construction and
contraction invariants [104] via distribution rearrangement.

Lower-bound Reasoning. Lower bounds synthesis is relatively straightforward, as
⊥ is a natural lower bound that serves as a starting point for fixed-point iteration.
Due to the continuity of the operator Φ, this iterative computation can generate
lower bounds with arbitrary precision. This principle has been applied through
loop unrolling [104] to generate lower bounds for posterior distributions. Another
prominent approach for constructing lower bounds involves the synthesis of lower
ω-invariants [53,58,59], which relies on constructing sequences and computing
their limits. Verification of lower bounds was first systematically addressed by
McIver and Morgan’s induction [75], which, however, is limited to bounded ex-
pectations and requires prior knowledge of the termination probability of the
while loops. Although lower bound verification may appear straightforward –
for instance, by generating a high-precision lower bound f ′ such that f ⊑ f ′ to
verify f ⊑ lfp Φ – this process often involves complex iterative computations,
making it inefficient and impractical in many cases. In fact, efficiently verify-
ing lower bounds is significantly more challenging than verifying upper bounds,
primarily due to the lack of a simple rule analogous to Park Induction. Specif-
ically, the rule I ⊑ Φ(I) =⇒ I ⊑ lfp Φ is generally unsound for lower bounds
verification [47]. The element Isub ∈ L that satisfies Isub ⊑ Φ(Isub) is called
subinvariant. Typical techniques on the synthesis of Isub include data-driven ap-
proaches [10,9] and constraint solving [29,40,60]. The unsoundness of Isup for
lower bounds verification in weakest preexpectation reasoning was addressed by
Hark et al. [47] through the concept of uniform integrability. They also proposed
an inductive proof rule for verifying lower bounds on WP. Building on this work,
Batz et al. [12] generalized their CEGIS framework to automate lower bounds
verification by proving UPAST properties and synthesizing c.d.b. subinvariants.
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Notably, many lower bounds verification approaches, including [47] and [12], are
limited to probabilistic programs that are almost-surely terminating. To address
this limitation, Feng et al. [37] proposed a proof rule leveraging the technique
of guard strengthening, thereby unleashing the general applicability of these
approaches to possibly divergent probabilistic programs.

Exact inference. PERPL [30] is a recently proposed probabilistic programming
language that models unbounded recursion using systems of polynomial equa-
tions. Its semantics are defined based on Markov kernels, and it leverages numer-
ical methods to compute least fixed points directly from the compiled equations.
Chen et al. [28] introduced a decidability result for determining whether such
programs can generate a specified distribution, leveraging probability generating
functions to represent and manipulate both finite and infinite-support distribu-
tions efficiently. Klinkenberg et al. [62] introduce an exact Bayesian inference
method for probabilistic programs with unbounded loops, using probability gen-
erating functions to handle the intricacy of conditioning.

5 Fixed-Point Reasoning for Markov Models

Markov models are mathematical frameworks used to describe systems with
transitions between states in a probabilistic manner. They are extensively em-
ployed in various fields, including chemistry, biology, machine learning, and
physics [85,77]. In practical applications, Markov models often involve a large
number of states and complex structures, such as cycles (or, loops). To analyze
these systems, researchers commonly formulate a wide range of problems as the
computation of a fixed point of a specific function. This section delves into the
theoretical foundations of fixed-point reasoning in Markov models. By examin-
ing fundamental problems and approaches to identifying fixed points, we aim to
provide a rigorous yet accessible perspective on this essential topic.

5.1 Introduction to Markov Models

A Markov chain (MC) is a probabilistic transition model in which the transition
probability depends solely on the current state, with no influence from previ-
ous states. Commonly studied problems in Markov Chains include calculating
reachability probabilities and expected rewards. Formally, an MC is a pair (S, δ),
where S is a set of states and δ : S → Dist(S) is a function mapping each state
to a distribution of successor states.

A Markov decision process (MDP) extends the concept of MC by introducing
the notion of “decision”. In an MDP, transitions to the next state are influenced
by policies, each of which represents a specific distribution of transition proba-
bilities. Formally, an MDP is a tuple (S,Act, δ), where S is a set of states, Act
is a set of actions, and δ : S × Act → Dist(S) is a function mapping a pair of a
state together with an action to the distribution of successor states. A policy is
a function S → Act, mapping each state to a certain action. With a policy, an
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MDP degenerates into an MC. Decision-making in MDPs refers to the problem
of finding a “good” policy that optimizes certain objectives.

Since an MC can always be considered as a special MDP with a singleton
Act, we focus our discussion on MDPs without loss of generality.

A weighted MDP is a tuple (S,Act, δ, T,R), where (S,Act, δ) is an MDP,
T ⊆ S is a set of target states, and R : S × Act × S → R is a weight function
(sometimes also called reward).7 For a weighted MDP, we fix a policy π. A
path is a sequence of states (si)i≥1 with each transition from si to si+1 being
δ(si, π(si))(si+1). In a weighted MDP with a set of target states T , a path either
ends in a state s ∈ T or is infinite and contains no states in T . Let Pπ denote
the set of all paths and µπ denote the probabilistic measure over Pπ.

5.2 Discounted and Undiscounted Objectives

Given a weighted MDP (S,Act, δ, T,R) and a fixed policy π, the accumulated
weight (or, reward) of a path p = (si)i≥1 is∑

i∈N
R (si, π(si), si+1) · γi ,

where γ ∈ (0, 1] is a discount factor. We can formulate almost all the problems
related to MCs/MDPs to a general form, that is, to evaluate the expected ac-
cumulated weight of paths over µπ and find the best policy that maximizes or
minimizes the expected accumulated weight.

According to different configurations of R and γ, the objectives concerned
with MCs and MDPs can be generally divided into the following 3 classes [16]:

– Discounted reward objectives. The discount factor γ is strictly smaller than
1. Discounted reward objective has a wide range of applications. It serves as
the core of Reinforcement Learning [96].

– Weighted reachability objectives. The discount factor γ = 1, R(s, a, S′) ≥ 0
for all s, s′ ∈ S and a ∈ Act, R(s, a, s′) = 0 for s′ ̸∈ T , and R(s, a, s′) is a
constant for a fixed s′. Intuitively speaking, if a path ends in a target state
s, it is assigned a reward that is only related to s. Otherwise, the reward is
0. Solving weighted reachability objectives means optimizing the expected
reward. If R(s, a, s′) = 1 for all s′ ∈ S, this degenerates to optimizing the
probability of reaching T .

– Stochastic shortest path objectives. The discount factor γ = 1 and R(s, a, s′) >
0 for all s, s′ ∈ S and a ∈ Act. Intuitively speaking, if a path ends in a target
state s, its (weighted) length is the accumulated weight of all the transitions
along the path. Otherwise, the length is infinity. Solving stochastic shortest
path means optimizing the expected path length.

Optimizing expected accumulated weight can be formulated as the computa-
tion of a fixed point for a specific function called the Bellman update operator :

BellmanUpdate(V ) = V ′ , (3)
7 A generalization to R ∪ {∞} with infinite rewards is recently proposed in [14].
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where V and V ′ are value vectors of the form S → R and V ′ is8

V ′(s) = supa∈Act Es′∈S(γV (s′) +R(s, a, s′)) . (4)

The fixed-point equation BellmanUpdate(V ) = V is called the Bellman
equation. For discounted reward objectives, where γ < 1, BellmanUpdate satis-
fies the definition of a contraction mapping. This enables the application of the
Banach fixed-point theorem, allowing the iterative computation of a unique fixed
point starting from any initial value. However, this method does not extend to
undiscounted objectives, which are of primary interest in the context of verifica-
tion. In such cases, a (complete) lattice structure over [0,∞]|S|,9 where |S| rep-
resents the size of the state space, is typically employed to address the problem.
BellmanUpdate is a monotone function under the natural partial order defined
on the lattice, making it amenable to analysis via Kleene’s fixed-point theorem.
Starting from the least element ⊥, the iterative application of BellmanUpdate
yields the least fixed point, which often aligns with the desired solution. In both
discounted and undiscounted cases, this iterative process for computing the fixed
point is known as value iteration (VI). For additional details, refer to [4].

5.3 Reasoning about the Bellman Equation in Markov Models

As mentioned earlier, the most straightforward way for computing fixed points of
Bellman update operators is VI. There are other mainstream approaches based
on linear programming (LP) and policy iteration (PI) [85]:

– PI is also an iterative approach that iterates on policies instead of value
vectors. It alternates between two key steps: policy evaluation and policy
improvement. In policy evaluation, a policy is fixed so that the MDP degen-
erates into an MC. Then we evaluate the fixed point of the MC. In policy
improvement, a new policy is derived using the value of the fixed point in
the policy evaluation step. This process repeats until the policy stabilizes,
indicating optimality.

– The computation of the expected accumulated weight can also be formulated
as a linear programming problem. This formulation allows for a polynomial-
time complexity in the number of states |S|, whereas both VI and PI have
exponential worst-case time complexity. However, both VI and PI require
only linear space, while a linear-space algorithm for LP has not yet been
discovered.

Hartmans et al. [49] provided a thorough experimental overview of VI, PI, and
LP in the context of probabilistic model checking. They compared different state-
of-the-art algorithms and LP solvers in terms of performance and correctness.

Since VI has a more direct relationship with fixed-point reasoning, the sub-
sequent discussion primarily focuses on VI and its variants.
8 Here, sup corresponds to maximizing the expected accumulated weight. For the

minimization counterpart, use inf instead.
9 Sometimes [0, 1] or other forms. This depends on the definition of R and the specific

objective.
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Establishing stopping criteria for value iteration. The VI approaches, in their
early form, hardly admit rigorous stopping criteria. A classical and naive ap-
proach is that, for the current value V and a given error bound ϵ, the VI algo-
rithm terminates when |BellmanUpdate(V )− V | < ϵ or |BellmanUpdate(V )−
V |/|V | < ϵ. These stopping criteria perform well in a number of cases and are
implemented in dominant probabilistic model checkers. However, there is no
guarantee for the final result of the naive approach. Haddad et al. [45] studied
this problem and first pointed out that the algorithm can return results with
arbitrary errors. They presented an interval value iteration (IVI) algorithm to-
gether with a straightforward stopping criterion. Meanwhile, Brázdil et al. [21]
introduced a verification method for MDPs based on machine learning together
with stopping criteria for the VI algorithm to avoid excessive useless iterations.
Křetínskỳ et al. [66] provided the first stopping criterion for VI of stochastic
games with total rewards and mean payoffs. They presented corresponding so-
lutions through two approaches: reduction to MDPs and direct operation on
stochastic games and illustrated that the latter approach is more efficient.

Optimizations on value iteration. Baier et al. [5] proposed an interval iteration
method, improving the accuracy of computing expected cumulative costs. Their
method can simultaneously provide upper and lower bounds for expected cumu-
lative costs and ensures convergence of iterations on both ends. Mathur et al. [15]
presented a new algorithm that improves the accuracy of approximate results
for iterative algorithms like VI. They implemented an extension of the PRISM
model checker [67] for this algorithm, enhancing the practicality of probabilistic
model checkers. Quatmann et al. [86] considered the selection of initial values in
the value iteration algorithm and proposed sound value iteration (SVI), which
does not require priori computations of the initial vectors. SVI exhibits faster
convergence and can yield tight upper and lower bounds; its applicability has
been demonstrated through the calculation of reachability probability and can be
easily extended to expected rewards. Hartmanns et al. [50] proposed optimistic
value iteration (OVI) which first computes a lower bound through standard VI,
then “guesses” an upper bound based on this lower bound, and finally verifies the
correctness of the upper bound. OVI is integrated into the probabilistic model
checking toolchain Modest Toolset [48]. For systems admitting a unique fixed
point, Lu et al. [72] proposed bisection value iteration (BVI); it iteratively refines
the result of a standard VI procedure while applying Park induction [83] and
κ-induction [13] to check whether the intermediate result is a genuine lower/up-
per bound. Watanabe et al. [101] proposed compositional value iteration (CVI)
leveraging a divide-and-conquer paradigm; it works on components of MDPs
instead of the monolithic system and reuses the local, intermediate results to
improve the scalability and efficiency of value iteration.

6 Fixed-Point Reasoning for Stochastic Hybrid Systems

Stochastic hybrid systems (SHSs) [51,24] are the stochastic counterparts of de-
terministic hybrid systems [98,31,41] modeling both continuous and discrete dy-
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namic behaviors. They are widely used to represent stochastic behaviors in fields
such as biology, control systems, and others. In SHSs, the discrete components
are typically modeled using Markov models (cf. Section 5), while the continuous
components are often represented by stochastic differential equations (SDEs). In
this section, we mainly focus on the continuous part of the SHSs.

A stochastic differential equation [82] takes the form

dXt = b(Xt) dt+ σ(Xt) dWt, t ≥ 0 , (5)

where {Xt} is a continuous-time stochastic process, and {Wt} is a Wiener pro-
cess (standard Brownian motion). Here, b is the drift coefficient, governing the
deterministic evolution of the system, and σ is the diffusion coefficient, captur-
ing the system’s coupling to the Gaussian white noise increments dWt. Unlike
ordinary differential equations, where solutions are single-valued functions, solu-
tions to stochastic differential equations (SDEs) are continuous-time stochastic
processes. Let F (t,X) denote the solution of Eq. (5) at time t with the initial
random state X. The process Xt satisfies F (t,Xh) = Xt+h thereby allowing Xt

to be interpreted as a fixed point of F . Due to the functional nature of F , explic-
itly formulating the solution process {Xt}t≥0 is equivalent to solving a partial
differential equation, specifically the Kolmogorov forward equation [82], which
is generally difficult to address. Consequently, research efforts have focused on
characterizing the quantitative properties of stochastic hybrid systems (SHS).

Stochastic reachability [22], which quantifies the probability that a system
eventually enters a target set, is a fundamental property examined in the ver-
ification of stochastic systems. In the seminal work by Prajna et al. [84], the
concept of a stochastic barrier function was introduced to obtain upper bounds
on stochastic reachability probabilities. The synthesis of a stochastic barrier
function is essentially equivalent to identifying a prefixed point B(x) satisfying

E[B(Xt2) | Xt1 ] ≤ Xt1 ,

where Xt denotes the stochastic trajectory of a SHS. Since then, numerous
studies have been dedicated to developing the barrier-based approach to ob-
tain tighter upper bounds. For instance, [95] introduces c-martingale condi-
tions for finite-time safety verification, while [89,88] extend barrier conditions
to state-dependent constraints for finite-time safety. Additionally, [38] proposes
vector exponential barriers, which achieve exponentially decreasing bounds on
tail reachability probabilities, to name a few. Beyond reachability, barrier-based
methods can also address other temporal properties such as reach-avoid, per-
sistence, and recurrence. For example, [103] demonstrates how to upper- and
lower-bound stochastic reach-avoid probabilities by leveraging the “ergodic oc-
cupation measure”, and [26] introduces additive and multiplicative barrier rules
for verifying persistence and recurrence properties.

In addition to barrier-based methods, several efforts attempt to approximate
the exact fixed-point numerically based on discretization abstraction and proba-
bilistic (bi-)simulation [68,3]. These methods typically begin by discretizing the
state space to construct an abstract, more tractable system (e.g., finite-state),
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and then establish bounds on the differences between the original and abstract
systems. In [42], Fränzle et al. give a high-level specification model of stochastic
hybrid automata and demonstrate how to bisimulate and over-approximate a
stochastic hybrid automaton by a probabilistic hybrid automaton. [54] proposes
a stochastic bisimulation function that quantifies the distance between two lin-
ear SHS. [71] survey different types of closeness guarantees for both discrete and
continuous stochastic systems.

7 Unified Frameworks for Fixed-Point Reasoning

As discussed in the previous sections, methods for approximating fixed points
vary across different types of systems. Despite the diversity of approaches to the
fixed-point reasoning problem in stochastic systems, several efforts have sought
to provide a unified perspective on this issue.

Interperting Probabilistic Programs as Markov Models [39]. The semantics of a
probabilistic program can be operationally interpreted as a Markov process de-
fined over its underlying control flow graph. Specifically, for any given program
C, there exists an associated Markov chain MC = (SC ,PC), where SC is defined
as L×Val, representing the product of program counters and variable valuations
(cf. Fig. 5). Consequently, fixed-point reasoning in probabilistic programs can
be framed within the context of fixed-point reasoning in Markov models. Specif-
ically, given a Markov chain M = (S,P) derived from a probabilistic program.
For any subset H ⊆ S, functions f : S → R and g : S → R, [39] introduces a
novel weighted reachability value function V (s) defined as follows:

V (s) = Es

[
TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]
. (6)

The key insight is that by appropriately selecting the functions f , g, and the set
H, the value function V (·) can accurately represent various quantities such as
the wp-/ert-transformer and other related metrics. This formulation effectively
transforms the quantitative verification problem into an MDP problem with
a weighted reachability objective. In the context of Markov models, the value
function V (s) satisfies the Bellman equation:∫

S

V (t)P(s,dt) + f(s) = V (s) , if s ∈ S\H ,

V (s) = g(s) , if s ∈ H .

(7)

Moreover, the weakest preexpectation transformer rule directly follows from
the Bellman equation, providing a link between fixed-point reasoning in proba-
bilistic programs and Markov models.
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1 : while (x ≥ 0){
2 : if (x ≥ 4)

3 : {x = x− 1 [0.4] x = x+ 1 }
4 : else

5 : {x = x− 1 [0.5] x = x+ 1 }
6 : }.
7 :

Fig. 5: A probabilistic program (left) and its CFG (right), where location label lin = 1
and lend = 7 represent the starting and ending point of the program, respectively.

Interpreting Markov models as abstract dynamic programming. As shown in
Section 5, contraction mapping is a crucial property in fixed-point reasoning of
Markov models. In [16], Bertsekas observes that monotonicity and contraction
are two fundamental properties capturing the essence of dynamic programming.

In the framework of abstract dynamic programming, the set of value functions
J : X → R is denoted by R(X), where X represents the abstract state space.
The Bellman operator is defined as H : X ×U ×R(X) → R(X). Given a policy
µ, the contraction map Tµ is formulated by

TµJ(x) = H(x, µ(x), J) . (8)

Therefore, the methods in abstract dynamic programming that compute or ap-
proximate the least fixed point (LFP) of TµJ effectively encapsulate results per-
tinent to the verification of Markov models.

8 Challenges and Future Directions

This section briefly outlines several key challenges and potential research direc-
tions in the quantitative fixed-point reasoning for stochastic systems.

– Exact inference of LFPs for probabilistic programs: Albeit with a handful
of preliminary results in this line of research, the limit of exact LFP infer-
ence remains obscure: On the one hand, the so-far identified subclasses of
probabilistic programs admitting effective symbolic inference algorithms are
limited in various ways, e.g., bounded loops, finite-support distributions, lin-
ear or even rectangular expressions, or the requirement of delicate invariants;
On the other hand, can we identify “the most expressive fragment” beyond
which exact inference is no longer possible? Does such fragment even exist?

– Template-free approximations of LFPs: While template-based methods for
approximating LFPs are hindered by the difficulty in selecting suitable tem-
plates, only a few approaches have successfully pursued template-free strate-
gies for LFP approximations. Notably, recurrence-based methods have been
applied to probabilistic programs, and there have been few attempts using
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numerical and statistical methods for stochastic systems. However, these ex-
isting techniques often fall short when being extended to general fixed-point
reasoning due to their domain-specific constraints. A potential approach to
advancing template-free LFP approximations lies in the appropriate combi-
nation of symbolic and numerical methods.

– Automated synthesis of stochastic systems: Existing synthesis techniques in
the realm of stochastic systems, including those surveyed in this paper, are
mostly concerned with quantitative expressions, e.g., invariants, expecta-
tions, moments, termination witnesses, probabilities, and policies. Extending
the synthesis scope to expressive models of stochastic systems is an interest-
ing direction. The main challenges are twofold: (i) identify stochastic depen-
dencies between distributions through, e.g., sampled data; and (ii) identify
system sketches with potentially complex iterative or cyclic behaviors. The
tool of fixed-point reasoning may be leveraged to address these challenges.

– Unified frameworks for FP reasoning : Fixed-point reasoning exhibits consis-
tent patterns across diverse models, including probabilistic programs, MDPs,
and stochastic hybrid systems. Despite initial efforts to develop unified frame-
works for fixed-point reasoning, identifying the common foundational ele-
ments that apply across these different application domains remains a signifi-
cant challenge. Establishing such a unified approach is essential for advancing
the generalizability and scalability of fixed-point reasoning methodologies in
various stochastic and probabilistic contexts.

9 Conclusion

We have presented the quantitative fixed-point reasoning landscape for stochas-
tic systems modeled as probabilistic programs, probabilistic transition systems,
and stochastic hybrid systems. This landscape outlines core techniques and their
relations for verifying, refuting, or synthesizing upper bounds, lower bounds, or
exact values for least fixed points of monotonic operators. Our landscape shall be
viewed as pointers – rather than a comprehensive literature review – to navigate
interested readers through the vibrantly developing field of fixed-point reasoning
in stochastic systems, with many open challenges to explore.
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